Share to: share facebook share twitter share wa share telegram print page

 

George Paget Thomson

Sir George Paget Thomson
Thomson in 1937
Born(1892-05-03)3 May 1892
Cambridge, England
Died10 September 1975(1975-09-10) (aged 83)
Cambridge, England
Alma materTrinity College, Cambridge
Known forElectron diffraction
Spouse
Kathleen Buchanan Smith
(m. 1924; died 1941)
Children4
FatherJ. J. Thomson
RelativesGeorge Edward Paget (grandfather)
George Adam Smith (father-in-law)
AwardsHoward N. Potts Medal (1932)
Nobel Prize in Physics (1937)
Hughes Medal (1939)
Royal Medal (1949)
Faraday Medal (1960)
Scientific career
FieldsPhysics
Institutions
Academic advisorsJ. J. Thomson

Sir George Paget Thomson (/ˈtɒmsən/; 3 May 1892 – 10 September 1975) was an English physicist who shared the 1937 Nobel Prize in Physics with Clinton Davisson for his discovery of the wave properties of the electron by electron diffraction.[1][2]

Education and early life

Thomson was born in Cambridge, England, the son of physicist and Nobel laureate J. J. Thomson and Rose Elisabeth Paget, daughter of George Edward Paget. Thomson went to The Perse School, Cambridge before going on to read mathematics and physics at Trinity College, Cambridge, until the outbreak of World War I in 1914, when he was commissioned into the Queen's Royal West Surrey Regiment. After brief service in France, he transferred to the Royal Flying Corps in 1915 to undertake research on aerodynamics at the Royal Aircraft Establishment at Farnborough and elsewhere. He resigned his commission as a captain in 1920.

Career

After the war, Thomson became a Fellow at Cambridge and then moved to the University of Aberdeen. He was jointly awarded the Nobel Prize for Physics in 1937 for his work at Aberdeen in discovering the wave-like properties of the electron. The prize was shared with the American physicist Clinton Davisson who had made the same discovery independently. Whereas Thomson’s father Joseph (who won the 1906 Nobel Prize) had seen the electron as a particle, the son demonstrated that the electron could be diffracted like a wave.[3] By scattering electrons through thin metallic films (3 × 10−6 cm thick) with known crystal structures, such as aluminium, gold and platinum, Thomson found the dimensions of the observed diffraction patterns. In each case, his observed diffractions were within 5 per cent of the predicted values given by de Broglie's wave theory. This discovery provided further evidence for the principle of wave–particle duality which had first been posited by Louis-Victor de Broglie in the 1920s as what is often dubbed the de Broglie hypothesis.

Between 1929 and 1930, Thomson was a Non-Resident Lecturer at Cornell University, Ithaca, New York.[1] In 1930 he was appointed Professor at Imperial College London in the chair of the late Hugh Longbourne Callendar. In the late 1930s and during the Second World War, he specialised in nuclear physics, concentrating on practical military applications. In particular, he was the chairman of the crucial MAUD Committee in 1940–1941 that concluded that an atomic bomb was feasible. In later life he continued this work on nuclear energy but also wrote works on aerodynamics and the value of science in society.

Thomson stayed at Imperial College until 1952, when he became Master of Corpus Christi College, Cambridge. In 1964, the college honoured his tenure with the George Thomson Building, a work of modernist architecture on the college's Leckhampton campus.

Awards and honours

In addition to winning the Nobel Prize in Physics, Thomson was knighted in 1943. He gave the address "Two aspects of science" as president of the British Association for 1959–1960.[4]

Personal life

Kathleen Adam Smith Paget Thomson

In 1924, Thomson married Kathleen Buchanan Smith, daughter of the Very Rev. Sir George Adam Smith, the Principal of the University of Aberdeen. They had two sons and two daughters. Kathleen died in 1941.[5]

Thomson died on 10 September 1975, at Cambridge, aged 83, and is buried with his wife in Grantchester parish churchyard to the south of Cambridge.

One of their sons, Sir John Thomson (1927–2018), became a senior diplomat who served as High Commissioner to India (1977–82) and Permanent Representative to the United Nations (1982–87). Their grandson Sir Adam Thomson (born 1955) also became a senior diplomat, serving as High Commissioner to Pakistan (2010–2013) and as Permanent Representative to NATO (2014–2016). One daughter, Lillian Clare Thomson, married the South African economist and mountaineer Johannes de Villiers Graaff.[6]

See also

References

  1. ^ a b "George Paget Thomson". Le Prix Nobel. the Nobel Foundation. 1937. Retrieved 12 September 2007.
  2. ^ "Thomson, Sir George Paget". Encyclopædia Britannica. Encyclopædia Britannica, Inc. 2007. Retrieved 12 September 2007.
  3. ^ Thomson, G. P. (1927). "Diffraction of Cathode Rays by a Thin Film". Nature. 119 (3007): 890. Bibcode:1927Natur.119Q.890T. doi:10.1038/119890a0. S2CID 4122313.
  4. ^ Leake, Chauncey D. (14 October 1960). "Meeting: British Association for the Advancement of Science". Science. 132 (3433): 1023–1024. Bibcode:1960Sci...132.1023L. doi:10.1126/science.132.3433.1023. PMID 17820679.
  5. ^ Moon, P. B. "Thomson, Sir George Paget". Oxford Dictionary of National Biography (online ed.). Oxford University Press. doi:10.1093/ref:odnb/31758. (Subscription or UK public library membership required.)
  6. ^ Botha, Joubert; Black, Philip; Leibbrandt, Murray; Koch, Steven F (April 2015). "Johannes de Villiers Graaf" (PDF). Royal Economic Society (169): 24–25 – via l.

Media related to George Paget Thomson at Wikimedia Commons

Academic offices
Preceded by Master of Corpus Christi College, Cambridge
1952–1962
Succeeded by
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9