Share to: share facebook share twitter share wa share telegram print page

 

Generated collection

Red line indicates the major scale on C within the outer circle of fifths

In music theory, a generated collection is a collection or scale formed by repeatedly adding a constant interval in integer notation, the generator, also known as an interval cycle, around the chromatic circle until a complete collection or scale is formed. All scales with the deep scale property can be generated by any interval coprime with the number of notes per octave. (Johnson, 2003, p. 83)

The C major diatonic collection can be generated by adding a cycle of perfect fifths (C7) starting at F: F-C-G-D-A-E-B = C-D-E-F-G-A-B. Using integer notation and 12-tone equal temperament, the standard tuning of Western music: 5 + 7 = 0, 0 + 7 = 7, 7 + 7 = 2, 2 + 7 = 9, 9 + 7 = 4, 4 + 7 = 11.

7-note segment of C5: the C major scale as a generated collection
7-note segment of C5: the C major scale as a generated collection

The C major scale could also be generated using cycle of perfect fourths (C5), as 12 minus any coprime of twelve is also coprime with twelve: 12 − 7 = 5. B-E-A-D-G-C-F.

A generated collection for which a single generic interval corresponds to the single generator or interval cycle used is a MOS (for "moment of symmetry"[1]) or well formed generated collection. For example, the diatonic collection is well formed, for the perfect fifth (the generic interval 4) corresponds to the generator 7. Though not all fifths in the diatonic collection are perfect (B-F is a diminished fifth), a well formed generated collection has only one specific interval between scale members (in this case 6)—which corresponds to the generic interval (4, a fifth) but to not the generator (7). The major and minor pentatonic scales are also well formed. (Johnson, 2003, p. 83)

The properties of generated and well-formedness were described by Norman Carey and David Clampitt in "Aspects of Well-Formed Scales" (1989), (Johnson, 2003, p. 151.) In earlier (1975) work, theoretician Erv Wilson defined the properties of the idea, and called such a scale a MOS, an acronym for "Moment of Symmetry".[1] While unpublished until it appeared online in 1999, this paper was widely distributed and well known throughout the microtonal music community, which adopted the term. The paper also remains more inclusive of further developments of the concept. For instance, the three-gap theorem implies that every generated collection has at most three different steps, the intervals between adjacent tones in the collection (Carey 2007).

A degenerate well-formed collection is a scale in which the generator and the interval required to complete the circle or return to the initial note are equivalent and include all scales with equal notes, such as the whole-tone scale. (Johnson, 2003, p. 158, n. 14)

A bisector is a more general concept used to create collections that cannot be generated but includes all collections which can be generated.

See also

References

  1. ^ "Introduction to Erv Wilson's Moments of Symmetry".

Sources

  • Carey, Norman (July 2007), "Coherence and sameness in well-formed and pairwise well-formed scales", Journal of Mathematics and Music, 1 (2): 79–98, doi:10.1080/17459730701376743, S2CID 120586231
  • Carey, Norman and Clampitt, David (1989). "Aspects of Well-Formed Scales", Music Theory Spectrum 11: 187–206.
  • Clough, Engebretsen, and Kochavi. "Scales, Sets, and Interval Cycles", 79.
  • Johnson, Timothy (2003). Foundations of Diatonic Theory: A Mathematically Based Approach to Music Fundamentals. Key College Publishing. ISBN 1-930190-80-8.
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9