Share to: share facebook share twitter share wa share telegram print page

 

Disrupted planet

Artist concept of a rocky planetary object being vaporized by its parent star

In astronomy, a disrupted planet[1][2] is a planet or exoplanet or, perhaps on a somewhat smaller scale, a planetary-mass object, planetesimal, moon, exomoon or asteroid that has been disrupted or destroyed by a nearby or passing astronomical body or object such as a star.[1][2] Necroplanetology is the related study of such a process.[3][4]

The result of such a disruption may be the production of excessive amounts of related gas, dust and debris,[5] which may eventually surround the parent star in the form of a circumstellar disk or debris disk. As a consequence, the orbiting debris field may be an "uneven ring of dust", causing erratic light fluctuations in the apparent luminosity of the parent star, as may have been responsible for the oddly flickering light curves associated with the starlight observed from certain variable stars, such as that from Tabby's Star (KIC 8462852), RZ Piscium and WD 1145+017.[3][4] Excessive amounts of infrared radiation may be detected from such stars,[6] suggestive evidence in itself that dust and debris may be orbiting the stars.[5][7][8][9]

Examples

Planets

Examples of planets, or their related remnants, considered to have been a disrupted planet, or part of such a planet, include: ‘Oumuamua[10] and WD 1145+017 b, as well as asteroids,[11] hot Jupiters[12] and those that are hypothetical planets, like Fifth planet, Phaeton, Planet V and Theia. Planets can also be disrupted by black holes; one example involves a "Jupiter-like object" being subject to a tidal disruption event by the supermassive black hole IGR J12580+0134, at the center of the galaxy NGC 4845.[13]

Stars

Examples of parent stars considered to have disrupted a planet include: EPIC 204278916, Tabby's Star (KIC 8462852), PDS 110, RZ Piscium, WD 1145+017 and 47 Ursae Majoris.[citation needed]

Artist concept of an "uneven ring of dust" surrounding Tabby's Star

Tabby's Star light curve

Tabby's Star (KIC 8462852) is an F-type main-sequence star exhibiting unusual light fluctuations, including up to a 22% dimming in brightness.[14] Several hypotheses have been proposed to explain these irregular changes, but none to date fully explain all aspects of the curve. One explanation is that an "uneven ring of dust" orbits Tabby's Star.[15][16] However, in September 2019, astronomers reported that the observed dimmings of Tabby's Star may have been produced by fragments resulting from the disruption of an orphaned exomoon.[17][18]

Consolidated plot of all known dimmings (as of 1 March 2020)

See also

References

  1. ^ a b Staff (22 December 2017). "Young Star RZ Piscium is 'Eating' Its Own Planets, Astronomers Say". Sci-News.com. Retrieved 23 December 2017.
  2. ^ a b Fryling, Kevin (21 December 2017). "IU astronomer's analysis helps discover that a star in the constellation Pisces is a 'planet-eater'". Indiana University. Retrieved 23 December 2017.
  3. ^ a b Starr, Michelle (28 March 2020). "Necroplanetology: The Strangest Field of Astronomy You've Never Heard Of". ScienceAlert.com. Retrieved 30 March 2020.
  4. ^ a b Duvvuri, Girish M.; Redfield, Seth; Veras, Dimitri (18 March 2020). "Necroplanetology: Simulating the Tidal Disruption of Differentiated Planetary Material Orbiting WD 1145+017". The Astrophysical Journal. 893 (2): 166. arXiv:2003.08410. Bibcode:2020ApJ...893..166D. doi:10.3847/1538-4357/ab7fa0. S2CID 213004256.
  5. ^ a b Punzi, K. M.; Kastner, J. H.; Melis, C.; Zuckerman, B.; Pilachowski, C.; Gingerich, L.; Knapp, T. (21 December 2017). "Is the Young Star RZ Piscium Consuming Its Own (Planetary) Offspring?". The Astronomical Journal. 155 (1): 33. arXiv:1712.08962. Bibcode:2018AJ....155...33P. doi:10.3847/1538-3881/aa9524. S2CID 119530135.
  6. ^ Farihi, J.; Jura, M.; Zuckerman, B. (10 March 2009). "Infrared Signatures of Disrupted Minor Planets at White Dwarfs". The Astrophysical Journal. 694 (2): 805–819. arXiv:0901.0973. Bibcode:2009ApJ...694..805F. doi:10.1088/0004-637X/694/2/805. S2CID 14171378.
  7. ^ Landau, Elizabeth (4 October 2017). "Mysterious Dimming of Tabby's Star May Be Caused by Dust". NASA. Retrieved 23 December 2017.
  8. ^ Meng, Huan Y.A.; et al. (3 October 2017). "Extinction and the Dimming of KIC 8462852". The Astrophysical Journal. 847 (2): 131. arXiv:1708.07556. Bibcode:2017ApJ...847..131M. doi:10.3847/1538-4357/aa899c. S2CID 118875846.
  9. ^ Tabor, Abby (5 October 2017). "The scientific quest to explain Kepler's most enigmatic find". Phys.org. Retrieved 23 December 2017.
  10. ^ Ćuk, Matija (2017). "1I/ʻOumuamua as a Tidal Disruption Fragment From a Binary Star System". The Astrophysical Journal. 852 (1): L15. arXiv:1712.01823. Bibcode:2018ApJ...852L..15C. doi:10.3847/2041-8213/aaa3db. S2CID 54959652.
  11. ^ Soter, Steven (2006). "What is a Planet?". The Astronomical Journal. 132 (6): 2513–2519. arXiv:astro-ph/0608359. Bibcode:2006AJ....132.2513S. doi:10.1086/508861. S2CID 14676169.
  12. ^ Nayakshin, Sergei (20 September 2011). "Hot Super Earths: disrupted young jupiters?". Monthly Notices of the Royal Astronomical Society. 416 (4): 2974–2980. arXiv:1103.1846. Bibcode:2011MNRAS.416.2974N. doi:10.1111/j.1365-2966.2011.19246.x. S2CID 53960650.
  13. ^ Lei, Wei-Hua; Yuan, Qiang; Zhang, Bing; Wang, Daniel (1 January 2016). "Igr J12580+0134: The First Tidal Disruption Event with an Off-Beam Relativistic Jet". The Astrophysical Journal. 816 (1): 20. arXiv:1511.01206. Bibcode:2016ApJ...816...20L. doi:10.3847/0004-637X/816/1/20. ISSN 0004-637X.
  14. ^ Boyajian, T. S.; LaCourse, D. M.; Rappaport, S. A.; Fabrycky, D.; Fischer, D. A.; Gandolfi, D.; Kennedy, G. M.; Korhonen, H.; Liu, M. C. (27 January 2016). "Planet Hunters IX. KIC 8462852 – where's the flux?". Monthly Notices of the Royal Astronomical Society. 457 (4): 3988–4004. arXiv:1509.03622. Bibcode:2016MNRAS.457.3988B. doi:10.1093/mnras/stw218. ISSN 0035-8711. S2CID 54859232.
  15. ^ "Mysterious Dimming of Tabby's Star May Be Caused by Dust". NASA/JPL. Retrieved 13 November 2018.
  16. ^ Boyajian, Tabetha S.; Alonso, Roi; Ammerman, Alex; Armstrong, David; Ramos, A. Asensio; Barkaoui, K.; Beatty, Thomas G.; Benkhaldoun, Z.; Benni, Paul (19 January 2018). "The First Post-Kepler Brightness Dips of KIC 8462852". The Astrophysical Journal. 853 (1): L8. arXiv:1801.00732. Bibcode:2018ApJ...853L...8B. doi:10.3847/2041-8213/aaa405. ISSN 2041-8213. S2CID 215751718.
  17. ^ Columbia University (16 September 2019). "New observations help explain the dimming of Tabby's Star". Phys.org. Retrieved 16 September 2019.
  18. ^ Marinez, Miquel; Stone, Nicholas C.; Metzger, Brian D. (5 September 2019). "Orphaned Exomoons: Tidal Detachment and Evaporation Following an Exoplanet-Star Collision". Monthly Notices of the Royal Astronomical Society. 489 (4): 5119–5135. arXiv:1906.08788. Bibcode:2019MNRAS.489.5119M. doi:10.1093/mnras/stz2464. S2CID 195316956.
  19. ^ Gary, Bruce L. (14 November 2017). "Hereford Arizona Observatory photometry observations of KIC 8462852". BruceGary.net. Retrieved 24 December 2017.
  20. ^ Gary, Bruce L. (4 October 2017). "Hereford Arizona Observatory photometry observations of KIC 8462852 between 2 May and 4 October 2017". BruceGary.net. Archived from the original on 4 October 2017. Retrieved 23 December 2017. Note: g'-band and r'-band dip depths (and shapes) may differ, with g'-band being more sensitive to dust cloud scattering due to its shorter wavelength (0.47 vs. 0.62 micron). For a reasonable particle size distribution (e.g., Hanson, 0.2 micron) the extinction cross section ratio would produce a depth at r'-band that is 0.57 x depth at g'-band. If g'-band depth is 0.3 %, for example, depth at r'-band could be 0.17 %. The "Tabby Team" measurements (Fig. 3) at r'-band are compatible with that small dip depth. Incidentally, none of these shapes resemble exo-comet tail transits; so the mystery of what's producing these week-timescale dips continues! Actually, long oval shapes are known to produce V-shaped dips (think of rings with a high inclination). – (as described by Rappaport et al, 2017 link)
  21. ^ Gary, Bruce L. (1 January 2018). "Hereford Arizona Observatory photometry observations of KIC 8462852 between 2 May and 31 December 2017". BruceGary.net. Archived from the original on 2 January 2018. Retrieved 1 January 2018.
  22. ^ Gary, Bruce L. (4 May 2018). "Hereford Arizona Observatory photometry observations of KIC 8462852 between 2 May 2017 and 4 May 2018". BruceGary.net. Archived from the original on 5 May 2018. Retrieved 5 May 2018.
  23. ^ Gary, Bruce (11 January 2020). "KIC 8462852 Hereford Arizona Observatory Photometry Observations #9". Archived from the original on 5 April 2020. Retrieved 5 April 2020.

Further reading

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9