Share to: share facebook share twitter share wa share telegram print page

 

Direct process

The direct process, also called the direct synthesis, Rochow process, and Müller-Rochow process is the most common technology for preparing organosilicon compounds on an industrial scale. It was first reported independently by Eugene G. Rochow and Richard Müller in the 1940s.[1][2]

The process involves copper-catalyzed reactions of alkyl halides with elemental silicon, which take place in a fluidized bed reactor. Although theoretically possible with any alkyl halide, the best results in terms of selectivity and yield occur with chloromethane (CH3Cl). Typical conditions are 300 °C and 2–5 bar. These conditions allow for 90–98% conversion for silicon and 30–90% for chloromethane. Approximately 1.4 Mton of dimethyldichlorosilane (Me2SiCl2) is produced annually using this process.[3]

Few companies actually carry out the Rochow process, because of the complex technology and high capital requirements. Since the silicon is crushed prior to reaction in a fluidized bed, the companies practicing this technology are referred to as silicon crushers.[4]

Reaction and mechanism

The relevant reactions are (Me = CH3):

x MeCl + Si → Me3SiCl, Me2SiCl2, MeSiCl3, Me4Si2Cl2, …

Dimethyldichlorosilane (Me2SiCl2) is of particular value (precursor to silicones), but trimethylsilyl chloride (Me3SiCl) and methyltrichlorosilane (MeSiCl3) are also valuable.[5]: 371 

The mechanism of the direct process is still not well understood, despite much research. Copper plays an important role. The copper and silicon form intermetallics with the approximate composition Cu3Si. This intermediate facilitates the formation of the Si-Cl and Si-Me bonds. It is proposed that close proximity of the Si-Cl to a copper-chloromethane "adduct" allows for formation of the Me-SiCl units. Transfer of a second chloromethane allows for the release of the Me2SiCl2. Thus, copper is oxidized from the zero oxidation state and then reduced to regenerate the catalyst.[1]

The chain reaction can be terminated in many ways. These termination processes give rise to the other products that are seen in the reaction. For example, combining two Si-Cl groups gives the SiCl2 group, which undergoes Cu-catalyzed reaction with MeCl to give MeSiCl3.[1]

In addition to copper, the catalyst optimally contains promoter metals that facilitate the reaction. Among the many promoter metals, zinc, tin, antimony, magnesium, calcium, bismuth, arsenic, and cadmium have been mentioned.[1][3]

Product distribution and isolation

The major product for the direct process should be dichlorodimethylsilane, Me2SiCl2. However, many other products are formed. Unlike most reactions, this distribution is actually desirable because the product isolation is very efficient.[1] Each methylchlorosilane has specific and often substantial applications. Me2SiCl2 is the most useful. It is the precursor for the majority of silicon products produced on an industrial scale. The other products are used in the preparation of siloxane polymers as well as specialized applications.[1]

Dichlorodimethylsilane is the major product of the reaction, as is expected, being obtained in about 70–90% yield. The next most abundant product is methyltrichlorosilane (MeSiCl3), at 5–15% of the total. Other products include Me3SiCl (2–4%), MeHSiCl2 (1–4%), and Me2HSiCl (0.1–0.5%).[1]

The Me2SiCl2 is purified by fractional distillation. Although the boiling points of the various chloromethylsilanes are similar (Me2SiCl2: 70 °C, MeSiCl3: 66 °C, Me3SiCl: 57 °C, MeHSiCl2: 41 °C, Me2HSiCl: 35 °C), the distillation utilizes columns with high separating capacities, connected in series. The purity of the products crucially affects the production of siloxane polymers, otherwise chain branching arises.[1]

References

  1. ^ a b c d e f g h Rösch, L.; John, P.; Reitmeier, R. (2003). "Organic Silicon Compounds". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a24_021. ISBN 978-3-527-30673-2..
  2. ^ Pachaly, B.; Weis, J. (1997). "The Direct Process to Methylchlorosilanes: Reflections on Chemistry and Process Technology". Organosilicon Chemistry III. pp. 478–483. doi:10.1002/9783527619900.ch79. ISBN 978-3-527-29450-3.
  3. ^ a b Elschenbroich, Christoph Organometallics VCH, Weinheim, Germany: 1992. ISBN 978-3-527-29390-2.
  4. ^ "Basic Silicone Chemistry – A Review" (PDF). Archived from the original (PDF) on 2011-05-16. Retrieved 2010-01-26.
  5. ^ Shriver & Atkins' inorganic chemistry. P. W. Atkins (5 ed.). Oxford: Oxford University Press. 2010. ISBN 978-0-19-923617-6. OCLC 430678988.{{cite book}}: CS1 maint: others (link)
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9