Share to: share facebook share twitter share wa share telegram print page

 

Denying the antecedent

Denying the antecedent (also known as inverse error or fallacy of the inverse) is a formal fallacy of inferring the inverse from an original statement. Phrased another way, denying the antecedent occurs in the context of an indicative conditional statement and assumes that the negation of the antecedent implies the negation of the consequent. It is a type of mixed hypothetical syllogism that takes on the following form:[1]

If P, then Q.
Not P.
Therefore, not Q.

which may also be phrased as

(P implies Q)
(therefore, not-P implies not-Q)[1]

Arguments of this form are invalid. Informally, this means that arguments of this form do not give good reason to establish their conclusions, even if their premises are true.

The name denying the antecedent derives from the premise "not P", which denies the "if" clause (antecedent) of the conditional premise.

The only situation where one may deny the antecedent would be if the antecedent and consequent represent the same proposition, in which case the argument is trivially valid (and it would beg the question) under the logic of modus tollens.

A related fallacy is affirming the consequent. Two related valid forms of logical arguments include modus ponens (affirming the antecedent) and modus tollens (denying the consequent).

Examples

One way to demonstrate the invalidity of this argument form is with an example that has true premises but an obviously false conclusion. For example:

If you are a ski instructor, then you have a job.
You are not a ski instructor.
Therefore, you have no job.[1]

That argument is intentionally bad, but arguments of the same form can sometimes seem superficially convincing, as in the following example offered by Alan Turing in the article "Computing Machinery and Intelligence":

If each man had a definite set of rules of conduct by which he regulated his life he would be no better than a machine. But there are no such rules, so men cannot be machines.[2]

However, men could still be machines that do not follow a definite set of rules. Thus, this argument (as Turing intends) is invalid.

Another example is:

If I am President of the United States, then I can veto Congress.
I am not President.
Therefore, I cannot veto Congress.

[This is a case of the fallacy denying the antecedent as written because it matches the formal symbolic schema at beginning. The form is taken without regard to the content of the language.]

See also

References

  1. ^ a b c Matthew C. Harris. "Denying the antecedent". Khan academy.
  2. ^ Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236): 433–460. doi:10.1093/mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9