Share to: share facebook share twitter share wa share telegram print page

 

Cassini and Catalan identities

Cassini's identity (sometimes called Simson's identity) and Catalan's identity are mathematical identities for the Fibonacci numbers. Cassini's identity, a special case of Catalan's identity, states that for the nth Fibonacci number,

Note here is taken to be 0, and is taken to be 1.

Catalan's identity generalizes this:

Vajda's identity generalizes this:

History

Cassini's formula was discovered in 1680 by Giovanni Domenico Cassini, then director of the Paris Observatory, and independently proven by Robert Simson (1753).[1] However Johannes Kepler presumably knew the identity already in 1608.[2]

Catalan's identity is named after Eugène Catalan (1814–1894). It can be found in one of his private research notes, entitled "Sur la série de Lamé" and dated October 1879. However, the identity did not appear in print until December 1886 as part of his collected works (Catalan 1886). This explains why some give 1879 and others 1886 as the date for Catalan's identity (Tuenter 2022, p. 314).

The Hungarian-British mathematician Steven Vajda (1901–95) published a book on Fibonacci numbers (Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, 1989) which contains the identity carrying his name.[3][4] However, the identity had been published earlier in 1960 by Dustan Everman as problem 1396 in The American Mathematical Monthly,[1] and in 1901 by Alberto Tagiuri in Periodico di Matematica.[5]

Proof of Cassini identity

Proof by matrix theory

A quick proof of Cassini's identity may be given (Knuth 1997, p. 81) by recognising the left side of the equation as a determinant of a 2×2 matrix of Fibonacci numbers. The result is almost immediate when the matrix is seen to be the nth power of a matrix with determinant −1:

Proof by induction

Consider the induction statement:

The base case is true.

Assume the statement is true for . Then:

so the statement is true for all integers .

Proof of Catalan identity

We use Binet's formula, that , where and .

Hence, and .

So,

Using ,

and again as ,

The Lucas number is defined as , so

Because

Cancelling the 's gives the result.

Notes

  1. ^ a b Thomas Koshy: Fibonacci and Lucas Numbers with Applications. Wiley, 2001, ISBN 9781118031315, pp. 74-75, 83, 88
  2. ^ Miodrag Petkovic: Famous Puzzles of Great Mathematicians. AMS, 2009, ISBN 9780821848142, S. 30-31
  3. ^ Douglas B. West: Combinatorial Mathematics. Cambridge University Press, 2020, p. 61
  4. ^ Steven Vadja: Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications. Dover, 2008, ISBN 978-0486462769, p. 28 (original publication 1989 at Ellis Horwood)
  5. ^ Alberto Tagiuri: Equation (3) in Di alcune successioni ricorrenti a termini interi e positivi, Periodico di Matematica 16 (1901), pp. 1–12.

References

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9