Share to: share facebook share twitter share wa share telegram print page

 

Calculus ratiocinator

The calculus ratiocinator is a theoretical universal logical calculation framework, a concept described in the writings of Gottfried Leibniz, usually paired with his more frequently mentioned characteristica universalis, a universal conceptual language.

Two views

There are two contrasting points of view on what Leibniz meant by calculus ratiocinator. The first is associated with computer software, the second is associated with computer hardware.

Analytic view

The received point of view in analytic philosophy and formal logic, is that the calculus ratiocinator anticipates mathematical logic—an "algebra of logic".[1] The analytic point of view understands that the calculus ratiocinator is a formal inference engine or computer program, which can be designed so as to grant primacy to calculations. That logic began with Frege's 1879 Begriffsschrift and C.S. Peirce's writings on logic in the 1880s. Frege intended his "concept script" to be a calculus ratiocinator as well as a universal characteristics. That part of formal logic relevant to the calculus comes under the heading of proof theory. From this perspective the calculus ratiocinator is only a part (or a subset) of the universal characteristics, and a complete universal characteristics includes a "logical calculus".

Synthetic view

A contrasting point of view stems from synthetic philosophy and fields such as cybernetics, electronic engineering, and general systems theory. It is little appreciated in analytic philosophy. The synthetic view understands the calculus ratiocinator as referring to a "calculating machine". The cybernetician Norbert Wiener considered Leibniz's calculus ratiocinator a forerunner to the modern day digital computer:

"The history of the modern computing machine goes back to Leibniz and Pascal. Indeed, the general idea of a computing machine is nothing but a mechanization of Leibniz's calculus ratiocinator."

— Wiener (1948, p. 214)

"...like his predecessor Pascal, [Leibniz] was interested in the construction of computing machines in the Metal. ... just as the calculus of arithmetic lends itself to a mechanization progressing through the abacus and the desk computing machine to the ultra-rapid computing machines of the present day, so the calculus ratiocinator of Leibniz contains the germs of the machina ratiocinatrix, the reasoning machine."

— Wiener (1965, p. 12)

Leibniz constructed just such a machine for mathematical calculations, which was also called a "stepped reckoner". As a computing machine, the ideal calculus ratiocinator would perform Leibniz's integral and differential calculus. In this way the meaning of the word, "ratiocinator" is clarified and can be understood as a mechanical instrument that combines and compares ratios.

Hartley Rogers saw a link between the two, defining the calculus ratiocinator as "an algorithm which, when applied to the symbols of any formula of the characteristica universalis, would determine whether or not that formula were true as a statement of science".[2]

A classic discussion of the calculus ratiocinator is that of Louis Couturat,[3] who maintained that the characteristica universalis — and thus the calculus ratiocinator — were inseparable from Leibniz's encyclopedic project.[4] Hence the characteristics, calculus ratiocinator, and encyclopedia form three pillars of Leibniz's project.

See also

References

  1. ^ Fearnley-Sander (1982), p. 164.
  2. ^ Rogers (1963), p. 934.
  3. ^ Couturat (1901), chapters 3, 4.
  4. ^ Couturat (1901), chapter 5.

Bibliography

  • Couturat, Louis (1901). La Logique de Leibniz. Translated by Rutherford, Donald. Paris: Felix Alcan. Archived from the original on 2012-08-14.
  • Rogers, Hartley Jr. (1963). "An Example in Mathematical Logic". The American Mathematical Monthly. 70 (9): 929–945. doi:10.1080/00029890.1963.11992146.
  • Wiener, Norbert (1948). "Time, communication, and the nervous system". Annals of the New York Academy of Sciences. 50 (4): 197–219. Bibcode:1948NYASA..50..197W. doi:10.1111/j.1749-6632.1948.tb39853.x. PMID 18886381. S2CID 28452205.
  • Wiener, Norbert (1965). Cybernetics or the Control and Communication in the Animal and the Machine (2, paperback ed.). The MIT Press.
  • Fearnley-Sander, Desmond (1982). "Hermann Grassmann and the Prehistory of Universal Algebra". The American Mathematical Monthly. 89 (3): 161–166. doi:10.1080/00029890.1982.11995404.
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9