Share to: share facebook share twitter share wa share telegram print page

 

Universelle Algebra

Die universelle Algebra (auch allgemeine Algebra) ist ein Teilgebiet der Mathematik, genauer der Algebra, das sich mit allgemeinen algebraischen Strukturen und ihren Homomorphismen sowie gewissen Verallgemeinerungen befasst.

Während in der abstrakten Algebra und ihren jeweiligen Teilgebieten wie Gruppentheorie, Ringtheorie und Körpertheorie algebraische Strukturen mit bestimmten festen Verknüpfungen mit festgelegten Eigenschaften untersucht werden, befasst sich die universelle Algebra mit Strukturen im Allgemeinen, also mit Strukturen mit beliebigen Verknüpfungen und beliebigen festlegbaren Eigenschaften. Die Gruppentheorie etwa spricht allgemein über Gruppen, für die universelle Algebra sind Gruppen dagegen nur ein Beispiel für einen Typ algebraischer Strukturen. Die universelle Algebra ist verwandt mit der Modelltheorie, einem Teilgebiet der mathematischen Logik, das sich mit der Beziehung zwischen Strukturen und logischen Formeln, die diese beschreiben, befasst. Von zentralem Interesse ist dabei die Modelltheorie der Gleichungslogik.[1] Auch die Verbandstheorie findet Anwendung in der universellen Algebra. Die Kategorientheorie stellt einen noch allgemeineren Ansatz dar, von dem aus sich die universelle Algebra betrachten lässt. Dabei wird die Beschreibung von Strukturen allein auf das Verhalten ihrer strukturerhaltenden Abbildungen unter Verkettung, im Falle der universellen Algebra der Homomorphismen, reduziert.

Grundbegriffe

Fundamentaler Grundbegriff der universellen Algebra ist der der algebraischen Struktur. Eine algebraische Struktur ist eine Menge , genannt Trägermenge, versehen mit einer Familie von Verknüpfungen möglicherweise verschiedener Stelligkeiten , wobei jeweils eine beliebige natürliche Zahl ist. Konstanten können dabei formal durch 0-stellige Verknüpfungen dargestellt werden. Eine Gruppe etwa ist eine algebraische Struktur mit einer zweistelligen Verknüpfung, der jeweiligen Gruppenmultiplikation. Ein Ring dagegen besitzt zwei zweistellige Verknüpfungen, die jeweilige Addition und die jeweilige Multiplikation.

Bei der Definition einer Gruppe oder eines Ringes und vieler weiterer Strukturen wird zusätzlich gefordert, dass die Verknüpfungen bestimmte Eigenschaften erfüllen, wie zum Beispiel das Assoziativgesetz. Ein natürlicher Untersuchungsgegenstand sind daher Klassen von algebraischen Strukturen, die bestimmte Eigenschaften erfüllen, die durch logische Formeln gegeben sind. In vielen Fällen kommt man dabei mit der einfachen Gleichungslogik aus. In dieser lassen sich – unter Hinzunahme von ein- bzw. nullstelligen Verknüpfungen für die Inversenbildung und das neutrale Element – etwa die Gruppenaxiome formulieren. Diese Logik hat etwa die angenehme Eigenschaft, dass jede Substruktur einer algebraischen Struktur, d. h. eine Teilmenge, soweit darauf die Verknüpfungen immer noch wohldefiniert sind, dieselben gleichungslogischen Formeln erfüllt. Jene Klassen bilden einen Spezialfall der in der klassischen Modelltheorie untersuchten elementaren Klassen von Strukturen, die durch Formeln der Prädikatenlogik erster Stufe axiomatisiert sind.

Ein Homomorphismus zwischen zwei algebraischen Strukturen und mit Verknüpfungen bzw. mit jeweils gleicher Stelligkeit ist eine Abbildung mit der Eigenschaft, dass für jedes und für alle die Gleichung

gilt. Jeder bijektive Homomorphismus auf einer algebraischen Struktur ist ein Isomorphismus. Mit den Homomorphismen als Morphismen bilden die algebraischen Strukturen eine Kategorie, so dass sich die üblichen allgemeinen kategorientheoretischen Begriffe anwenden lassen.

Verallgemeinerungen

Neben einfachen algebraischen Strukturen werden auch verschiedenartige Verallgemeinerungen betrachtet, auf die sich mitunter bestimmte Sätze übertragen lassen, etwa:

Geschichte

Der britische Mathematiker Alfred North Whitehead veröffentlichte 1898 seine Treatise on Universal Algebra. In diesem Werk sprach er auf allgemeine Weise von Verknüpfungen (operations) und Gleichungen, unter universeller Algebra, unter Universal Algebra verstand er jedoch nur das Studium von Strukturen mit zwei inneren Verknüpfungen (das heißt zwei Magmastrukturen, Addition und Multiplikation genannt), mit verschiedenen möglichen zusätzlichen Eigenschaften, und evtl. einer Art verallgemeinerten Graduierung.[2] Allgemeine Ergebnisse der universellen Algebra erzielte er dagegen nicht.[3] Solche lieferte erstmals 1935 Garrett Birkhoff.[4][3] Anatoli Iwanowitsch Malzew wandte ab 1941 erstmals die frühen modelltheoretischen Ergebnisse, die er in allgemeine, moderne Form gebracht hatte,[5] auf die universelle Algebra an.[6]

Literatur

  • Garrett Birkhoff: Lattice Theory. 3. Auflage. American Mathematical Society, Providence, Rhode Island 1979.
  • Stanley Burris, H. P. Sankappanavar: A Course in Universal Algebra. Hrsg.: Natural Sciences and Engineering Research Council Canada (= Graduate texts in mathematics. Nr. 78). Ottawa, Ontario, Canada 2000 (math.uwaterloo.ca [PDF; 15,5 MB]).
  • George Grätzer: Universal Algebra. Van Nostrand, Princeton (NJ) 1968, ISBN 978-0-387-77486-2, doi:10.1007/978-0-387-77487-9.
  • Thomas Ihringer: Allgemeine Algebra. Mit einem Anhang über Universelle Coalgebra von H. P. Gumm (= Berliner Studienreihe zur Mathematik. Band 10). Heldermann, Lemgo 2003, ISBN 3-88538-110-9.
  • Anatolij Ivanovič Mal’cev: The Metamathematics of Algebraic Systems. Collected Papers: 1936–1967 (= Studies in logic and the foundations of mathematics. Band 66). North-Holland, Amsterdam 1971 (aus dem Russischen übersetzt von Benjamin Franklin Wells).
  • Heinrich Werner: Einführung in die allgemeine Algebra (= BI-Hochschultaschenbücher. Band 120). Bibliographisches Institut, Mannheim u. a. 1978, ISBN 3-411-00120-8.

Einzelnachweise

  1. Heinrich Werner: Rezension des Buches Equational logic von Walter Taylor. In: The Journal of Symbolic Logic. Band 47, Nr. 2, 1982, S. 450, doi:10.2307/2273161, JSTOR:2273161.
  2. Alfred North Whitehead: A Treatise on Universal Algebra. with Applications. Cambridge University Press, Cambridge 1898 (projecteuclid.org).
  3. a b George Grätzer: Universal Algebra. S. vii.
  4. Lev Aleksandrovich Skornyakov: Universal algebra.
  5. Die allgemeine, überabzählbare Signaturen erlaubenden Varianten des Satzes von Löwenheim-Skolem, des Kompaktheitssatzes und des Vollständigkeitssatzes gehen auf ihn zurück, siehe Juliette Kennedy: Kurt Gödel. In: Edward N. Zalta (Hrsg.): Stanford Encyclopedia of Philosophy..
  6. George Grätzer: Universal Algebra. S. viii.
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9