Share to: share facebook share twitter share wa share telegram print page

 

Satz von Morera

Der Satz von Morera, benannt nach Giacinto Morera, ist ein Satz aus der Funktionentheorie, einem Teilgebiet der Mathematik. Die Funktionentheorie beschäftigt sich mit komplex differenzierbaren Funktionen und deren Eigenschaften.

Ist offen und eine Funktion, dann heißt sie holomorph, wenn sie in jedem Punkt von komplex differenzierbar ist. Dies stellt eine sehr starke Eigenschaft dar, beispielsweise ist eine holomorphe Funktion auch gleichzeitig analytisch, d. h. lokal in eine Potenzreihe entwickelbar. Es gibt also verhältnismäßig wenige Funktionen, mit denen sich die Funktionentheorie beschäftigt. Unter anderem daher folgen aus einigermaßen geringen Voraussetzungen sehr starke Schlüsse. Einige solcher Schlüsse erlaubt der Satz von Morera.

Der Satz

Es sind mehrere Versionen des Satzes üblich:

1. Version

Es sei offen und eine stetige Funktion. Für jedes in gelegene Dreieck verschwinde das Kurvenintegral über die Randkurve des Dreiecks, d. h. . Dann ist holomorph auf .

2. Version

Es sei offen und eine Funktion. Wenn auf lokal integrierbar ist, d. h. wenn in jedem Punkt von eine lokale Stammfunktion besitzt, dann ist holomorph auf .

Tatsächlich sind alle Aussagen äquivalent:

  • 1. Version: Wenn holomorph ist, dann verschwindet das Kurvenintegral über die Randkurve eines jeden in gelegenen Dreiecks nach dem Lemma von Goursat.
  • 2. Version: Da offen ist, existiert zu jedem Punkt eine konvexe Umgebung . Da holomorph ist, existiert auf eine Stammfunktion von nach dem Integralsatz von Cauchy.

Literatur

  • Eberhard Freitag, Rolf Busam: Funktionentheorie, Springer, Berlin 2000, ISBN 3-540-67641-4
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9