Share to: share facebook share twitter share wa share telegram print page

 

Rekursive Programmierung

Bei der rekursiven Programmierung ruft sich eine Prozedur, Funktion oder Methode in einem Computerprogramm selbst wieder auf (d. h. enthält eine Rekursion). Auch der gegenseitige Aufruf stellt eine Rekursion dar.

Wichtig bei der rekursiven Programmierung ist eine Abbruchbedingung in dieser Funktion, weil sich das rekursive Programm sonst theoretisch unendlich oft selbst aufrufen würde.

Rekursive Programmierung kann unter anderem in prozeduralen und objektorientierten Programmiersprachen angewandt werden. Obwohl diese Sprachen in ihrem Sprachstandard die Rekursion ausdrücklich zulassen, stellen Selbstaufrufe und gegenseitige Aufrufe hier (aufgrund der verwendeten Programmierparadigmen) jedoch eher die Ausnahme dar. Auch wenn in der Praxis zur Verbesserung des Programmierstils auch hier durchaus häufig auf Rekursion zurückgegriffen wird, sind die meisten Funktionen in diesen Sprachen doch rein iterativ.

In einigen Sprachen, wie z. B. in manchen funktionalen Programmiersprachen oder Makroprozessoren, muss die rekursive Programmiermethode zwingend verwendet werden, da iterative Sprachkonstrukte fehlen.

Beispiele

Fakultät

Ein Beispiel für die Verwendung einer rekursiven Programmierung ist die Berechnung der Fakultät einer Zahl. Die Fakultät ist das Produkt aller ganzen Zahlen von 1 bis zu dieser Zahl. Die Fakultät von 4 ist also .

Mathematiker definieren die Fakultät meistens so (eine rekursive Definition):

  • Die Fakultät der Zahl 0 ist definitionsgemäß 1.
  • Die Fakultät einer ganzen Zahl, die größer als Null ist, ist das Produkt dieser Zahl mit der Fakultät der nächstkleineren ganzen Zahl.

Die Definition funktioniert so:

  • Will man die Fakultät von 4 berechnen, so muss man zunächst die Fakultät von 3 berechnen und das Ergebnis mit 4 multiplizieren.
  • Will man die Fakultät von 3 berechnen, so muss man zunächst die Fakultät von 2 berechnen und das Ergebnis mit 3 multiplizieren.
  • Will man die Fakultät von 2 berechnen, so muss man zunächst die Fakultät von 1 berechnen und das Ergebnis mit 2 multiplizieren.
  • Will man die Fakultät von 1 berechnen, so muss man zunächst die Fakultät von 0 berechnen und das Ergebnis mit 1 multiplizieren.
  • Die Fakultät von 0 ist nach Definition 1.
  • Die Fakultät von 1 ist also 1*1=1
  • Die Fakultät von 2 ist also 1*1*2=2
  • Die Fakultät von 3 ist also 1*1*2*3=6
  • Die Fakultät von 4 ist also 1*1*2*3*4=24

In einer Programmiersprache wie Pascal, die rekursive Programmierung zulässt, kann man die Fakultät folgendermaßen eingeben:

Man definiert eine Funktion factorial, die eine Zahl x als Eingabewert bekommt. Diese Funktion multipliziert x mit dem Rückgabewert von factorial(x - 1) außer bei x = 0, dann liefert die Funktion das Ergebnis 1. Dies ist die Abbruchbedingung:

Rekursive Implementation der Fakultätsfunktion

function factorial(x: Integer): Integer;
begin
    if x = 0 then
        factorial := 1
    else
        factorial := x * factorial(x - 1);
end;

Mit der Startzahl x = 4 würde der Computer rechnen:

4 * (3 * (2 * (1 * factorial(0))))

heraus kommt dann das richtige Ergebnis, nämlich 24.

Binäre Suche

Die binäre Suche in einem vorsortierten Array lässt sich rekursiv implementieren. Wenn das mittlere Element kleiner als das gesuchte Element ist, wird die hintere Hälfte des Arrays rekursiv durchsucht. Wenn es größer als das gesuchte Element ist, wird die vordere Hälfte des Arrays rekursiv durchsucht. Ist es gleich dem gesuchten Element, ist die Suche beendet.

Die Abbruchbedingung für die Rekursion ist erfüllt, wenn das mittlere Element gleich dem gesuchten Element ist, die Suche also erfolgreich ist, oder wenn der Endindex kleiner als der Startindex ist, die Suche also erfolglos ist.

Die folgende Funktion (Methode) für die rekursive binäre Suche ist in der Programmiersprache C#:

int RekursiveBinaereSuche(int[] werte, int gesuchterWert, int startIndex, int endIndex)
{
    if (endIndex < startIndex)
    {
        // Wenn Element nicht gefunden, dann null zurückgeben
        return null;
    }
    int mittlererIndex = (startIndex + endIndex) / 2;
    if (werte[mittlererIndex] == gesuchterWert)
    {
        // Wenn Element gefunden, dann Index zurückgeben
        return mittlererIndex;
    }
    else
    {
        if (werte[mittlererIndex] < gesuchterWert)
        {
            // Rekursiver Aufruf der Funktion für die hintere Hälfte
            return RekursiveBinaereSuche(werte, gesuchterWert, mittlererIndex + 1, endIndex);
        }
        else
        {
            // Rekursiver Aufruf der Funktion für die vordere Hälfte
            return RekursiveBinaereSuche(werte, gesuchterWert, startIndex, mittlererIndex - 1);
        }
    }
}

Effizienz

Rekursive Programme haben in der Regel keine gute Performance. Durch die wiederholten Funktionsaufrufe (Inkarnationen) wird immer wieder derselbe Methodeneintrittscode bearbeitet und bei jeder Inkarnation der Kontext gesichert, was zu zusätzlichem Programmcode und höherem Arbeitsspeicherverbrauch führt. Alle rekursiven Algorithmen lassen sich jedoch auch durch iterative Programmierung implementieren und umgekehrt.

Fakultät

Man hätte die Fakultät auch so implementieren können:

function factorial(x: Integer): Integer;
    var i, number: Integer;
begin
    number := 1;

    for i := 1 to x do
        number := number * i;

    factorial := number;
end;

Hierbei gilt die Regel, dass für einfache Probleme eine iterative Implementierung häufig effizienter ist. So sollte z. B. auch die Fakultätsfunktion der Effizienz wegen in der Praxis iterativ implementiert werden. Bei komplizierten Problemstellungen (z. B. Aufgaben mit Bäumen) hingegen lohnt sich oftmals der Einsatz einer rekursiven Lösung, da für solche Probleme eine iterative Formulierung schnell sehr unübersichtlich – und ineffizient – werden kann, da im schlimmsten Fall der Stack durch den iterativen Algorithmus selbst verwaltet werden muss, was sonst der Prozessor direkt erledigt.

Nicht alle höheren Programmiersprachen lassen rekursive Aufrufe zu. Ein Beispiel dazu ist älteres Fortran. Ab Fortran 90 sind rekursive Aufrufe möglich. Andere Programmiersprachen sind dagegen grundsätzlich rekursiv (wie z. B. Prolog). Solche rekursiven Programmiersprachen und auch andere Sprachen wie z. B. Scheme setzen die Rekursion meistens effizient um.

Implementierung

Rekursion wird in der Regel durch einen Stack implementiert, der die Rücksprungadressen, aber auch alle lokalen Variablen und eventuell Funktionsergebnisse aufnimmt. Würde man, wie im obenstehenden Beispiel, die Fakultät von 4 berechnen, so würde jeder Aufruf folgende Informationen auf den Stack legen:

  1. Platz für Ergebnis
  2. Argument x
  3. Rücksprungadresse

Zunächst würde im Hauptprogramm also fac(4) aufgerufen und damit die folgenden Informationen auf den Stack gelegt:

Stapelanfang 1 Platz für Ergebnis
2 4 (Argument)
Stapelzeiger 3 Rücksprungadresse ins Hauptprogramm

Die Fakultätsfunktion prüft jetzt, ob das Argument 0 ist. Da dies nicht der Fall ist, wird 4*fac(3) berechnet. Zunächst muss also fac mit dem Argument 3 aufgerufen werden:

Stapelanfang 1 Platz für Ergebnis
2 4 (Argument)
3 Rücksprungadresse ins Hauptprogramm
4 Platz für Ergebnis
5 3 (Argument)
Stapelzeiger 6 Rücksprungadresse in die Fakultätsfunktion

Das Argument ist wieder ungleich 0, also geht’s weiter mit 3*fac(2).

Stapelanfang 1 Platz für Ergebnis
2 4 (Argument)
3 Rücksprungadresse ins Hauptprogramm
4 Platz für Ergebnis
5 3 (Argument)
6 Rücksprungadresse in die Fakultätsfunktion
7 Platz für Ergebnis
8 2 (Argument)
Stapelzeiger 9 Rücksprungadresse in die Fakultätsfunktion

Das Argument ist wieder ungleich 0, also2*fac(1).

Stapelanfang 1 Platz für Ergebnis
2 4 (Argument)
3 Rücksprungadresse ins Hauptprogramm
4 Platz für Ergebnis
5 3 (Argument)
6 Rücksprungadresse in die Fakultätsfunktion
7 Platz für Ergebnis
8 2 (Argument)
9 Rücksprungadresse in die Fakultätsfunktion
10 Platz für Ergebnis
11 1 (Argument)
Stapelzeiger 12 Rücksprungadresse in die Fakultätsfunktion

Das Argument ist wieder ungleich 0, also1*fac(0).

Stapelanfang 1 Platz für Ergebnis
2 4 (Argument)
3 Rücksprungadresse ins Hauptprogramm
4 Platz für Ergebnis
5 3 (Argument)
6 Rücksprungadresse in die Fakultätsfunktion
7 Platz für Ergebnis
8 2 (Argument)
9 Rücksprungadresse in die Fakultätsfunktion
10 Platz für Ergebnis
11 1 (Argument)
12 Rücksprungadresse in die Fakultätsfunktion
13 Platz für Ergebnis
14 0 (Argument)
Stapelzeiger 15 Rücksprungadresse in die Fakultätsfunktion

Jetzt ist das Argument 0, das Ergebnis also 1. Wir holen die Rücksprungadresse und das Argument vom Stack und schreiben die 1 in den dafür vorgesehenen Platz. Der Rücksprung führt in die Fakultätsfunktion zurück:

Stapelanfang 1 Platz für Ergebnis
2 4 (Argument)
3 Rücksprungadresse ins Hauptprogramm
4 Platz für Ergebnis
5 3 (Argument)
6 Rücksprungadresse in die Fakultätsfunktion
7 Platz für Ergebnis
8 2 (Argument)
9 Rücksprungadresse in die Fakultätsfunktion
10 Platz für Ergebnis
11 1 (Argument)
12 Rücksprungadresse in die Fakultätsfunktion
Stapelzeiger 13 1 (Ergebnis)

Jetzt kann man das Ergebnis mit dem Argument multiplizieren (1*1). Das neue Ergebnis ist wieder 1. Die Rücksprungadresse und das Argument werden vom Stack geholt und das neue Ergebnis in den dafür vorgesehenen Platz geschrieben. Rücksprung in die Fakultätsfunktion:

Stapelanfang 1 Platz für Ergebnis
2 4 (Argument)
3 Rücksprungadresse ins Hauptprogramm
4 Platz für Ergebnis
5 3 (Argument)
6 Rücksprungadresse in die Fakultätsfunktion
7 Platz für Ergebnis
8 2 (Argument)
9 Rücksprungadresse in die Fakultätsfunktion
Stapelzeiger 10 1 (Ergebnis)

Wiederum wird das Ergebnis mit dem Argument multipliziert (1*2). Zurück in die Fakultätsfunktion:

Stapelanfang 1 Platz für Ergebnis
2 4 (Argument)
3 Rücksprungadresse ins Hauptprogramm
4 Platz für Ergebnis
5 3 (Argument)
6 Rücksprungadresse in die Fakultätsfunktion
Stapelzeiger 7 2 (Ergebnis)

Das Ergebnis wird mit dem Argument multipliziert (2*3). Zurück in die Fakultätsfunktion:

Stapelanfang 1 Platz für Ergebnis
2 4 (Argument)
3 Rücksprungadresse ins Hauptprogramm
Stapelzeiger 4 6 (Ergebnis)

Das Ergebnis wird mit dem Argument multipliziert (6*4). Zurück ins Hauptprogramm

Stapelanfang
Stapelzeiger
1 24 (Ergebnis)

Das Hauptprogramm muss dann nur noch das Ergebnis 24 vom Stack holen.

Siehe auch

Wikibooks: Rekursive Labyrinthe – Lern- und Lehrmaterialien
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9