NiederspannungsnetzNiederspannungsnetze sind ein Teil des Stromnetzes zur Verteilung der elektrischen Energie an den größten Teil der elektrischen Endverbraucher (Niederspannungsgeräte) und werden von vielen regionalen Verteilnetzbetreibern zur Verfügung gestellt. Um Leistungsverluste zu minimieren, sind Niederspannungsnetze in der räumlichen Ausdehnung auf einen Bereich von einigen 100 m bis zu einigen wenigen Kilometern beschränkt. Sie werden daher regional über Transformatorenstationen aus einem übergeordneten Mittelspannungsnetz gespeist. Niederspannungsnetze sind im Unterschied zu den anderen Spannungsebenen in weiten Bereichen Europas nicht als Drei-, sondern als Vierleitersysteme aufgebaut, um den Anschluss einphasiger Verbraucher zu ermöglichen. Sie werden üblicherweise mit einer Netzspannung von 230 V / 400 V (einphasig / dreiphasig) bis 1000 V betrieben. Die Bemessungsleistungen einzelner Ortsnetztransformatoren liegen bei 250, 400, 630 oder 1000 kVA. Außerhalb von Europa sind auch andere Formen und Betriebsspannungen üblich. Im nordamerikanischen Raum und teilweise im asiatischen Raum ist beispielsweise das Einphasen-Dreileiternetz und das darauf aufbauende Red-Leg Delta System verbreitet. NetzformenEuropaDie in Europa gebräuchlichen Netzformen basieren auf Dreiphasenwechselstrom, sind von der International Electrotechnical Commission (IEC) festgelegt:
USA, Kanada, Australien, GroßbritannienIn den USA ist in ländlichen Gebieten ein symmetrisches Einphasennetz (Einphasen-Dreileiternetz) üblich. Es werden drei Leiter verlegt, von denen einer geerdet ist. Die anderen beiden führen jeweils 120 Volt / 60 Hz gegen Erde, jedoch um 180° phasenverschoben. Dadurch ist 120 Volt oder in symmetrischer Form 240 Volt verfügbar. Um Netze über weite Strecken aufbauen zu können, werden oft Masttransformatoren pro Verbraucher genutzt, die aus einer auf den gleichen Masten verlegten Mittelspannungsleitung gespeist werden. Die Stromrückleitung erfolgt über die Erde, indem jeder der Trafos einseitig geerdet ist (Single Wire Earth Return). Ist Drehstrom erforderlich, wird ein dritter Leiter verlegt. Um dabei das symmetrische Einpasennetz beibehalten zu können, ist der dritte Leiter jedoch auf hohem Potential gegen Erde (High Leg, 208 V entsprechend 120 V · √3). Auch in Großbritannien und Australien sind auf dem Lande Einphasennetze üblich, jedoch mit 230 bis 240 Volt gegen Erde und dementsprechend 460 bis 480 Volt zwischen den Außenleitern. In Australien wird auch vom Single Wire Earth Return mit Masttransformatoren pro Verbraucher Gebrauch gemacht. TopologieNiederspannungsnetze sind ausgehend vom Bereich der Hauptverteilung üblicherweise in mehrere Kabelstränge unterteilt, welche einzelne Häuser oder Häusergruppen in der näheren Umgebung versorgen. Die Stränge werden meist sternförmig realisiert, wobei im Bereich des Hausanschlusses über einen so genannten Schleifenkasten die Abzweigungen zu den Unterverteilung erfolgen. Bei den in ländlichen Gegenden noch üblichen Freileitungen erfolgt die Ausspeisung über Dachständer. In Sonderfällen kann ein Niederspannungsnetz auch als Ring aufgebaut und von mehreren Stellen gespeist sein. Im Bereich der Unterverteilung erfolgt eine sternförmige Speisung der einzelnen Verbraucher und Steckdosen. In England und in manchen ehemaligen englischen Kolonien kommen auch ringförmige Verteilungen im Rahmen der Norm BS 1363 in Wohnungen vor. Die Ringtopologie hat den Vorteil, dass bei gleicher Leistung geringere Leiterquerschnitte verwendet werden können, allerdings ist der Installationsaufwand höher. SpeisungNiederspannungsnetze werden aus dem Mittelspannungsnetz durch lokale Transformatorenstationen gespeist. Manchmal wird ein etwas kostengünstigerer Trafo mit der Schaltgruppe Yy0 (Stern-Stern 0) verwendet, wobei die Sekundärseite der Wicklungen an einem Ende zum Sternpunkt zusammengeschaltet sind. Besser als die Sternschaltung ist die Schaltgruppe Yz5 (Stern-Zickzack 5), bei der durch die Verteilung des unsymmetrischen Außenleiterstromes auf je 2 Schenkelhälften eines Trafos die Unsymmetrie weitestgehend ausgeglichen wird. Geschieht dieser Ausgleich nicht, dann werden die einzelnen Außenleiterspannungen beim Verbraucher ungleich hohe Spannungswerte aufweisen und Schieflasten sind die Folge. Auf der Niederspannungsseite wird der Sternpunkt des Ortstransformators starr geerdet. Dabei ist ein Erdungswiderstand von gewöhnlich RE unter 2 Ω gefordert. Ist dieser Wert durch Alterung, Beschädigung, Bodentrockenheit oder anderen Umständen höher, kann es im Fehlerfall zu unzulässig hohen Berührungsspannungen oder Schrittspannungen kommen. Leiterbezeichnungen
Die Bahn muss unter ihren Fahrleitungen alle metallischen Teile in den Potenzialausgleich einbeziehen, auch Geländer, Uhren und Verkleidungen. Im Rissbereich der Fahrleitung müssen die Leitungen sogar 25 kA/1 s thermische Kurzschlussströme aushalten. Der elektrische Spannungsabfall durch Fahrleitungskurzschlüsse würde sonst zu hohe Spannungen erzeugen. FarbgebungZur Unterscheidung der Außenleiter und des Neutralleiters sind bei Kabelsystemen für Niederspannung je nach Region einheitliche Farben festgelegt. In der EU ist die Farbgebung durch die Norm EN 60445 (IEC 60445, VDE 0197) festgelegt.[1] In anderen Ländern werden auch davon abweichende Farbschemata verwendet. Einige übliche Farbgebungen in Dreiphasensystemen sind:
Anmerkungen zur Farbtabelle:
Die Verwendung des blauen Leiters in einem Niederspannungskabel für andere Zwecke als den Neutralleiter ist laut VDE 0100-510:514.3.Z4 als Ausnahme in der häuslichen Installation erlaubt, wenn in dem Kabel kein Neutralleiter benötigt wird und eine Verwechslung ausgeschlossen ist. So kann man die blaue Ader als geschaltete Leitung (zum Beispiel in einem Kabel zu einem einzelnen Schalter) verwenden, wobei eine eindeutige Markierung erfolgen sollte. Die Verwendung eines andersfarbigen (nicht blauen) Leiters als Neutralleiter (zum Beispiel des grauen Leiters in einem fünfadrigen Kabel für die Realisierung von zwei Stromkreisen in diesem) ist jedoch anhand dieser VDE Definition nicht erlaubt.[4][5] SonderformenNiederspannungsnetze mit Nennspannungen von 690 V werden unter anderem in Industrieanlagen oder Kraftwerken zur Versorgung von größeren Elektromotoren zum Antrieb von Pumpen, Förderbändern und dergleichen mit Leistungen von einigen 100 kW bis zu einigen Megawatt verwendet. Eine weitere spezielle Anwendung höherer Niederspannungen sind ausgedehnte Niederspannungsnetze in ländlichen Gebieten in Europa mit 960 V als Zwischenspannung, um den Spannungsabfall zwischen der Mittelspannungs-Transformatorenstation und dem 400-V-Endkundenanschluss zu verringern. Dazu wird in unmittelbarer Nähe des Endkunden (zum Beispiel ein abgelegenes Gehöft oder einzelne abgelegene Landhäuser) ein zusätzlicher Transformator von 960 V auf 400 V im Leistungsbereich einiger 10 kVA vorgesehen. Die Transformatorstation, die mit Mittelspannung betrieben wird, kann sich hingegen einige Kilometer entfernt befinden. Der Vorteil der Zwischenspannung besteht neben einer Reduktion der Spannungsschwankungen auf langen Niederspannungszuleitungen darin, dass keine von der Isolierung her aufwändige und teure Mittelspannungsleitung bis zu den entlegenen Gebäuden notwendig ist. Es können die bis 1 kV zugelassenen Niederspannungsleitungen und Elektroinstallationseinrichtungen verwendet werden. Weitere AnwendungenNiederspannungsnetze werden nicht nur zur elektrischen Energieversorgung verwendet, sondern auch zur Nachrichtenübertragung. Insbesondere erfolgen über Niederspannungsnetze die Übertragung von Steuersignalen mittels bidirektionalen Powerline Communication (PLC), historisch und in der Bedeutung abnehmend mittels der unidirektionalen Rundsteuertechnik und in manchen Ländern auch höherfrequente Datensignale mittels Trägerfrequenzmodems. Historisch gab es auch Anwendungen zu Übertragung von Rundfunkprogrammen mittels Drahtfunk auf Niederspannungsleitungen. Siehe auchLiteratur
Einzelnachweise
|