Share to: share facebook share twitter share wa share telegram print page

 

Kurvenschar

Parabelschar
Bündel in und Büschel in
Funktionenschar einer Parabel

Eine Kurvenschar, auch Funktionenschar, Funktionsschar oder Parameterfunktion, ist eine Menge verschiedener Kurven, deren Abbildungsvorschriften sich in mindestens einem Parameter unterscheiden. Sonderfälle sind das Büschel, eine einparametrige Schar, und das Bündel, eine Schar mit einem allen Funktionen gemeinsamen Punkt.

Definition

Die Schar ist eine Menge von Punkten auf einer Kurve, Kurven auf einer Fläche oder Flächen im Raum, die jeweils durch eine Gleichung oder ein System von Gleichungen mit veränderlichen Parametern beschrieben werden.

Gemäß einer anderen Definition ergibt sich eine Kurvenschar aus dem Graphen einer Funktion, in der ein freier Parameter der betreffenden Funktion in Parameterdarstellung variiert wird.

Zur Veranschaulichung von Funktionsscharen eignen sich besonders dynamische-Geometrie-Systeme.

Sonderfälle

  • Handelt es sich bei allen Schaubildern der Funktionsschar um Geraden, so spricht man von einer Geradenschar.
    • Verlaufen dabei die einzelnen Geraden auch noch parallel, so bezeichnet man sie als Parallelenschar.
    • Wenn sich alle beteiligten Geraden in einem Punkt schneiden, handelt es sich um ein Geradenbündel.
    • Wenn sich alle beteiligten Geraden sowohl in einem Punkt schneiden als auch in einer Ebene liegen, handelt es sich um ein Geradenbüschel.
  • Handelt es sich bei allen Kurven der Schar um Parabeln, so spricht man von einer Parabelschar.

Eigenschaften

Ortskurve (rot) der Wendepunkte einer Funktion (schwarz)

Für bestimmte Punkte einer Kurvenschar lässt sich oft eine Ortskurve bestimmen, d. h. eine neue Kurve, die die Lage dieser Punkte in Abhängigkeit der Parameter der Schar angibt (über alle Kurven der Schar).

Beispiele

  • alle Kurven der zur Funktion gehörigen Kurvenschar verlaufen parallel zur -Achse (Geraden). Der Parameter dieser Kurvenschar ist .
  • alle Kurven der zur Funktion gehörigen Schar sind Parabeln durch den Koordinatenursprung (siehe Abbildung). Der Parameter ist .
  • alle Kurven der zur Relation gehörigen Schar sind konzentrische Kreise. Der Parameter ist hier .

Literatur

  • Kurvenschar In: Schülerduden – Mathematik II. Bibliographisches Institut & F.A. Brockhaus, 2004, ISBN 3-411-04275-3, S. 241–242
  • Mark Ja. Vygodskij: Höhere Mathematik griffbereit: Definitionen, Theoreme, Beispiele. Springer 2013, ISBN 978-3-322-90113-2, S. 696
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9