Share to: share facebook share twitter share wa share telegram print page

 

Gradientwind

Der Gradientwind bezeichnet in der Meteorologie ein Wind-Modell, bei dem sich

im Kräftegleichgewicht befinden. Lokale Effekte, beispielsweise durch Gebirge oder Bodenreibung, werden nicht berücksichtigt.

Der Gradientwind ist eine Erweiterung des geostrophischen Windes sowie des zyklostrophischen Windes, sodass auch der Begriff geostrophisch-zyklostrophischer Wind benutzt wird. Er stellt die beste Näherung an den realen Wind dar, die aus Wetterkarten und Höhenwindmessungen noch relativ genau vorhergesagt werden kann.[1]

Geschwindigkeit des Gradientwindes

Die Geschwindigkeit des Gradientwindes ist abhängig von der ihm aufgezwungenen Bahn:

Zyklonal

Kräfte am zyklonalen Gradientwind. Die Richtung der Geschwindigkeit stimmt nur für die Nordhalbkugel.

Bei einer zyklonalen Bewegung dreht sich die Luft um ein Tiefdruckgebiet. Die Corioliskraft zeigt dabei zusammen mit der Zentrifugalkraft weg vom Zentrum, die Druckgradientkraft zeigt zum Zentrum. Es gilt folglich

Nach Auflösen nach der Geschwindigkeit ergibt sich

Weil die Gleichung quadratisch ist, gibt es zwei theoretisch mögliche Lösungen. Die negative erfordert aber höhere Windgeschwindigkeiten und stellt sich deshalb in der Realität nie ein. Für die tatsächliche Geschwindigkeit gilt deshalb

Dabei ist

Weil die Corioliskraft hier zusammen mit der Zentrifugalkraft die Druckgradientkraft ausgleicht, ist der zyklonale Gradientwind langsamer als der geostrophische Wind (subgeostrophisch).

Antizyklonal

Kräfte am antizyklonalen Gradientwind. Die Richtung der Geschwindigkeit stimmt nur für die Nordhalbkugel.

Bei einer antizyklonalen Bewegung dreht sich die Luft um ein Hochdruckgebiet. Die Druckgradientkraft zeigt dabei zusammen mit der Zentrifugalkraft weg vom Zentrum, die Corioliskraft zeigt zum Zentrum. Es gilt folglich

Nach Auflösen nach der Geschwindigkeit ergibt sich als Lösung

Hier gibt es wieder zwei theoretisch mögliche Lösungen, die Negative erfordert aber die geringere Geschwindigkeit und stellt sich deshalb in der Realität ein.

Weil die Corioliskraft hier die Druckgradientkraft und die Zentrifugalkraft ausgleichen muss, ist der antizyklonale Gradientwind schneller als der geostrophische Wind (supergeostrophisch). Bei gleichem Druckgradienten weht der Wind folglich um ein Hochdruckgebiet stärker als um ein Tiefdruckgebiet.[1]

Kritische Krümmung

Bei besonders kleinen Hochdruckgebieten mit starkem Druckgradienten führt die hohe Zentrifugalkraft dazu, dass der Gradientwind ein Gleichgewicht zwischen Corioliskraft und der Summe von Zentrifugal- und Druckgradientkraft nicht erreichen kann. Hochdruckgebiete werden deshalb unterhalb eines bestimmten minimalen Radius , gleichbedeutend mit einer großen Krümmung, instabil. Die Luft kann nicht mehr auf einer festen Kreisbahn strömen, sondern fließt nach außen vom Hochdruckgebiet weg. Dabei löst sich das Hochdruckgebiet teilweise auf, bis der Druckgradient so schwach ist, dass wieder eine stabile Bahn erreicht werden kann. Die kritische Krümmung folgt aus der quadratischen Gleichung zur Lösung des Kräftegleichgewichts des antizyklonalen Gradientwindes.

Für die Geschwindigkeit gibt es nur dann eine reelle Lösung, solange der Wert unter der Wurzel nicht negativ wird. Für den antizyklonalen Gradientwind steht dort

Weil der Druckgradient immer negativ ist, können negative Werte unter der Wurzel auftreten. Der minimale Radius , bei dem der Term unter der Wurzel gerade noch nicht negativ ist, wird erreicht, wenn gilt

Nach auflösen nach erhält man

Für die kritische Krümmung ergibt sich damit

Dabei ist

Weil der Coriolisparameter mit zunehmender geographischer Breite zunimmt, sind zu den Polen hin immer größere Krümmungen und damit immer kleinere Hochs möglich.

Die Windgeschwindigkeiten um ein Hochdruckgebiet können durch diese Begrenzung der Druckgradientkraft nicht beliebig groß werden. Sehr starke Winde können deshalb nur um Tiefdruckgebiete auftreten.

Literatur

  • Andreas Bott: Synoptische Meteorologie: Methoden der Wetteranalyse und -prognose. Springer, Berlin, Heidelberg 2012.

Einzelnachweise

  1. a b Brigitte Klose, Klose, Heinz,: Meteorologie : Eine interdisziplinäre Einführung in die Physik der Atmosphäre. 3. Auflage. Springer Spektrum, Berlin 2016, ISBN 978-3-662-43622-6, S. 295 - 297.
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9