Share to: share facebook share twitter share wa share telegram print page

 

Glucose-Oxidase

Glucose-Oxidase (Penicillium amagasakiense)
Glucose-Oxidase (Penicillium amagasakiense)
Kalottenmodell des Glucose-Oxidase-Dimer aus Penicillium amagasakiense nach PDB 1GPE
Masse/Länge Primärstruktur 587 Aminosäuren
Sekundär- bis Quartärstruktur Homodimer
Kofaktor FAD
Bezeichner
Externe IDs
Enzymklassifikation
EC, Kategorie
Reaktionsart Redoxreaktion
Substrat β-D-Glucose + O2
Produkte D-Glucono-1,5-lacton + H2O2

Glucose-Oxidase (GOD, auch Glukose-Oxidase) ist ein Enzym, das die sauerstoff-abhängige Oxidation am C1-Kohlenstoffatom des Zuckers Glucose katalysiert.

Das dimere Flavoenzym setzt Glucose und Sauerstoff zu Gluconolacton und Wasserstoffperoxid um. Es kommt in Pilzen, wie dem Weißfäulepilz Phanerochaete chrysosporium und den Schimmelpilzen Aspergillus niger und Penicillium amagasakiense, vor, wurde aber auch bereits für Bombyx mori nachgewiesen.[1] Die Kristallstruktur des Enzyms aus diesen beiden Pilzen wurde mit Röntgenkristallographie bestimmt. Die Molekülmasse beträgt 120 kDa.

Nach Bindung der Glucose an das Enzym erfolgt der Elektronentransfer auf das am Enzym gebundene FAD, was zu FADH2 reduziert wird. Das Gluconolacton wird freigesetzt, es kann spontan oder enzymatisch zu Gluconsäure hydrolysiert werden. In einem zweiten Schritt wird molekularer Sauerstoff an das Isoalloxazin-Ringsystem des FAD addiert und das Hydroperoxid dann als Wasserstoffperoxid freigesetzt. Molekularer Sauerstoff ist der natürliche Elektronenakzeptor, das Enzym kann aber mit einer Reihe künstlicher Akzeptoren arbeiten.

Das Enzym hat große Bedeutung in der Bestimmung von Glucose mit dem GOD-Test. Es wird auch häufiger als Modellenzym für elektronische Mini-Enzymbiosensoren verwendet, dabei wird das Enzym auf eine Metallfläche aufgebracht und kann die Elektronen der von ihm katalysierten Redoxreaktion weiterleiten.

Vorkommen

Glucose-Oxidase kommt u. a. natürlich im Honig vor. Dabei ist es Bestandteil körpereigener Sekrete, die die Bienen schon beim Transport von der Blüte zum Stock dem Nektar zufügen. Der durch die Glucose-Oxidase katalysierte Übertragung von Elektronen auf molekularen Sauerstoff, wodurch keimtötendes oder keimhemmendes Wasserstoffperoxid gebildet wird, wird eine große Bedeutung bei der Konservierung des Honigs im Bienenstock beigemessen.[2]

Quellen

  1. BRENDA – the comprehensive enzyme information system
  2. Helmut Horn und Cord Lüllmann: „Das große Honigbuch – Entstehung, Gewinnung, Gesundheit und Vermarktung“, Franckh-Kosmos Stuttgart, 3. Auflage 2002, ISBN 978-3-440-10838-3.
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9