Share to: share facebook share twitter share wa share telegram print page

 

Gegenring

Der Gegenring zu einem Ring ist eine Konstruktion aus dem mathematischen Teilgebiet der Ringtheorie. Der Gegenring zu einem Ring entsteht dadurch, dass man bei der Multiplikation die Faktoren vertauscht.

Definition

Es sei ein Ring. Dann wird der Gegenring (engl. opposite ring) wie folgt definiert:[1][2]

  • Die unterliegende Menge von ist .
  • Die Addition + auf stimmt mit derjenigen auf überein.
  • Die Multiplikation wird mittels der Multiplikation von wie folgt definiert: für alle .

ist also im Wesentlichen der Ausgangsring, lediglich bei der Multiplikation wird gegenüber dem Ausgangsring die Reihenfolge der Faktoren vertauscht.

Eigenschaften

  • Ist kommutativ, so ist offenbar .
  • Sätze über Linksideale in einem Ring sind Sätze über Rechtsideale in . Daher gelten Sätze, die für alle Linksideale in allen Ringen gelten, auch für Rechtsideale in allen Ringen.
  • Ist eine -Algebra über einem Körper, so ist auch eine solche Algebra, indem man für und dieselbe Vektorraumstruktur verwendet. Man spricht dann auch von der Gegenalgebra.
  • Es sei die Algebra der -Matrizen über einem Körper. Dann gilt für die Transposition bekanntlich die Regel . Das bedeutet, dass die Transposition ein Ringhomomorphismus ist, sogar ein Isomorphismus. Allgemeiner ist ein Antihomomorphismus zwischen zwei Ringen ein Homomorphismus bzw.
  • Im Allgemeinen sind und nicht isomorph. Beispiele findet man dort, wo gewisse Links-rechts-Symmetrien nicht gelten. So gibt es zum Beispiel linksnoethersche Ringe, die nicht rechtsnoethersch sind; solche Ringe können nicht zu ihrem Gegenring isomorph sein.
  • Ist ein -Linksmodul, so wird durch die Definition zu einem -Rechtsmodul.

Einzelnachweise

  1. Theodor Bröcker: Lineare Algebra und Analytische Geometrie, Birkhäuser Verlag (2004), ISBN 3-0348-8962-3, Kapitel X, §8, Seite 331
  2. Louis H. Rowen: Ring Theory. Band 1. Academic Press Inc., Boston u. a. 1988, ISBN 0-12-599841-4 (Pure and Applied Mathematics 127), Definition 0.1.11
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9