Share to: share facebook share twitter share wa share telegram print page

 

Differenzkern

Ein Differenzkern, auch Egalisator oder nach der englischsprachigen Bezeichnung Equalizer genannt, ist eine Verallgemeinerung des mathematischen Begriffes Kern auf beliebige Kategorien.

Definition

In einer Kategorie seien zwei Morphismen gegeben. Ein Differenzkern von und ist ein Morphismus mit folgenden Eigenschaften:

  • und
  • zu jedem Morphismus , für den gilt, gibt es genau einen Morphismus , so dass .[1][2]

Beispiele

ein Differenzkern. Insbesondere in der zuletzt genannten Kategorie ist
automatisch ein Untermodul, der mit dem Kern der Differenz zusammenfällt, was die Bezeichnung Differenzkern erklärt.
  • In den Kategorien der Gruppen, abelschen Gruppen, Vektorräume oder Ringe ist der Differenzkern zweier Morphismen durch den Differenzkern der zugrundeliegenden Mengenabbildungen gegeben.
  • Hat die betrachtete Kategorie Nullobjekte und ist in der Situation obiger Definition der Nullmorphismus , so ist ein Differenzkern von und nichts anderes als ein Kern von . Damit ist jeder Kern ein Beispiel für einen Differenzkern.

Bemerkungen

  • Differenzkerne sind nicht eindeutig bestimmt. Sind aber in der Situation obiger Definition und zwei Differenzkerne von und , so folgt aus der Eindeutigkeiteigenschaft, dass es einen eindeutig bestimmten Isomorphismus mit gibt. Differenzkerne sind also bis auf (eindeutige) Isomorphie bestimmt, weshalb man oft von dem Differenzkern spricht und ihn mit bezeichnet.
  • In einer weiteren sprachlichen Ungenauigkeit nennt man das Objekt den Differenzkern. Der eigentlich gemeinte Morphismus ist dann immer eine naheliegende Inklusionsabbildung, die unerwähnt bleiben kann.
  • Man sagt, eine Kategorie habe Differenzkerne, wenn es zu je zwei Morphismen einen Differenzkern gibt. Die in den obigen Beispielen genannten Kategorien Set, Top und -Mod haben offenbar Differenzkerne. Die Unterkategorie Set2 der mindestens zweielementigen Mengen von Set hat keine Differenzkerne.[3]
  • Differenzkerne sind Monomorphismen.[4] Die Umkehrung gilt im Allgemeinen nicht. Diejenigen Monomorphismen, die als Differenzkern auftreten, nennt man regulär.
  • Differenzkerne sind spezielle Limites, nämlich die von Funktoren (auch -förmige Diagramme genannt), in welchen die Kategorie aus zwei Objekten mit jeweiligen Identitäten und zwei parallelen Morphismen zwischen ihnen besteht.

Äquivalente Beschreibung

Ein Differenzkern zweier Morphismen in einer beliebigen Kategorie kann auch als das durch die folgenden äquivalenten Eigenschaften charakterisierte Unterobjekt von beschrieben werden:

wobei

und der Differenzkern auf der rechten Seite der oben beschriebene Differenzkern in der Kategorie der Mengen ist, nicht der in der betrachteten Kategorie.

Des Weiteren soll der Isomorphismus in Punkt 2 natürlich in sein, das heißt: Nennen wir die Familie von Isomorphismen

dann gilt für alle und alle für die der folgende Ausdruck definiert ist, dass

Siehe auch

Einzelnachweise

  1. B. Pareigis: Kategorien und Funktoren, B. G. Teubner (1969), Kapitel 1.9: Differenzkerne und -kokerne
  2. Horst Herrlich, George E. Strecker: Category Theory, Allyn and Bacon Inc. 1973, Definition 16.2
  3. Horst Herrlich, George E. Strecker: Category Theory, Allyn and Bacon Inc. 1973, Beispiele 16.9
  4. Horst Herrlich, George E. Strecker: Category Theory, Allyn and Bacon Inc. 1973, Satz 16.4
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9