Share to: share facebook share twitter share wa share telegram print page

 

Chaperon (Protein)

Chaperone (engl. Anstandsdamen) sind Proteine, die neu synthetisierte Proteine bei der Faltung unterstützen. Die Bezeichnung wurde nach der englischen Bezeichnung für Anstandsdame gewählt, „da sie unreife Proteine vor schädlichen Kontakten bewahren“.

Funktion

Neu synthetisierte Proteine müssen zunächst ihre spezifische, native, funktionelle Konformation finden. Diese ist grundsätzlich in der Primärstruktur angelegt, und kleinere Proteine können sich auch spontan in der richtigen Weise falten. Das klassische Beispiel für spontane Faltung ist die Ribonuklease. Vor allem bei größeren, komplexeren Proteinen sind aber oft Hilfsmittel zur korrekten Faltung nötig, da solche Proteine zur Bildung von unerwünschten, funktionsuntüchtigen Aggregationen neigen.

Zellen haben einen Weg gefunden, die Aggregation von neu synthetisierten Proteinen von Beginn an zu minimieren. Dafür bedient sich die Zelle einer komplexen, hochkonservierten Proteinmaschinerie, den Chaperonen. Diese Proteine interagieren spezifisch mit aggregationsanfälligen Proteinen und treten somit direkt in Konkurrenz zu Aggregationsreaktionen. Die Chaperone beschleunigen dabei die korrekte Faltung und Assoziation der Proteine, ohne selbst Teil der Struktur zu werden. Beeinflusst werden nur nichtkovalente Wechselwirkungen. Das folgende Schema beschreibt grob die Funktion der Chaperone, wobei U das neu synthetisierte, noch ungefaltete Protein darstellt, das in einer Zufallsknäuel-Struktur vorliegt. Ein Weg führt nun zur Aggregation des Proteins (A), der andere Weg aber unter Vermittlung des Chaperons zum nativen Protein N:

Der mit Abstand am besten studierte Chaperon-Mechanismus, jener der Gruppe Hsp60 (GroEL in Bakterien), wird bildlich als hydrophobic donut hole beschrieben: Das Chaperon ähnelt einem „Fass“ oder „Donut“ mit Deckeln an beiden Seiten. An der Innenseite des Fasses sind hydrophobe Ketten lokalisiert, die mit den hydrophoben Bereichen des darin befindlichen ungefalteten Proteins wechselwirken und es so an der unerwünschten Aggregation hindern. Sobald das Protein seine native Konformation erreicht hat, sind die hydrophoben Bereiche im Protein selbst abgesättigt. Unter ATP-Verbrauch wird der „Deckel“ geöffnet und das fertige Produkt aus dem „Fass“ oder „Donut“ entlassen.

Chaperone sind nicht nur deswegen so wichtig, da sie neu synthetisierten Proteinen ihre funktionelle Struktur geben, sondern haben noch weitergehende Bedeutung: Da Proteine nur als lange Aminosäurekette ohne jegliche Wasserstoff- und Disulfidbrückenbindungen die Tunnelproteine der Zellmembranen (z. B. in ein Mitochondrium) passieren können, müssen sie nach dem Durchqueren der Zellmembran wieder zurückgefaltet werden, sodass sie ihre Funktion wiedererlangen. Dies ist ebenfalls Aufgabe der Chaperone.

Klassifizierung von Chaperonen

Chaperone werden benötigt, um neuen Aminosäureketten überhaupt zu ihrer physiologischen Sekundärstruktur zu verhelfen. Das Bakterienchaperon GroEL beispielsweise hilft schätzungsweise der Hälfte aller mittelgroßen (30–60 kDa), neu synthetisierten Bakterienproteine bei der Faltung. Der enorme Verbrauch an ATP, also an Energie, den dies mit sich führt, unterstreicht die Wichtigkeit dieses Prozesses.

Viele Chaperone weisen bei unphysiologisch hohen Temperaturen eine erhöhte Syntheserate auf und gehören damit zu den klassischen Hitzeschockproteinen. Allerdings können auch andere Faktoren wie oxidativer Stress oder zellschädigende Substanzen zu einer Anhäufung von Proteinaggregaten führen und dadurch das Auftreten von Hitzeschockproteinen auslösen. Bereits 1988 konnte nachgewiesen werden, dass eine klare Korrelation zwischen der Expression von Hitzeschockproteinen und dem Auftreten von Thermotoleranz bzw. der Fähigkeit, Stresssituationen bis zu einem gewissen Ausmaß zu tolerieren, besteht. Bei der Klassifikation der Hitzeschockproteine spielen Sequenzhomologien und ihre Molekülmasse eine entscheidende Rolle. Mit Hilfe dieser Kriterien konnten bisher fünf universelle Klassen von Hitzeschockproteinen unterschieden werden:

Man kann die Chaperone nicht auf ein gemeinsames Urprotein zurückführen. Sie stellen eine heterogene Klasse dar, deren Mitglieder zu verschiedenen Zeitpunkten der Evolution entstanden.

Des Weiteren sind Lektinchaperone bekannt, zu denen Calreticulin und Calnexin gehören. Diese helfen bei der Faltung von Glykoproteinen.

Abzugrenzen von den Chaperonen sind Faltungshelferenzyme, wie die Peptidyl-Prolyl-cis/trans-Isomerase oder die Protein-Disulfid-Isomerase.

Siehe auch

Literatur

  • J. Buchner: Introduction: the cellular protein folding machinery. Cell Mol. Life Sci 59. 2002, 1587–1588.
  • H. Wegele; L. Muller; J. Buchner: Hsp70 and Hsp90 - a relay team for protein folding. Rev Physiol. Biochem. Pharmacol. 151. 2004, 1–44 (Springer Verlag).
  • Michael Groß: Faltungshelfer in Bewegung. In: Chemie in unserer Zeit. Band 46, Nr. 2, 2012, S. 70, doi:10.1002/ciuz.201290021.
  • H.Fiedler: Chaperone. Lexikon der Medizinischen Laboratoriumsdiagnostik. 2019, S. 558. Springer Verlag. doi:10.1007/978-3-662-48986-4_708
Commons: Chaperone proteins – Sammlung von Bildern, Videos und Audiodateien
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9