Share to: share facebook share twitter share wa share telegram print page

 

Angewandte Mathematik

Die Angewandte Mathematik beschäftigt sich sowohl mit der Entwicklung neuer Methoden zur Lösung von Problemen aus anderen Gebieten (wie Chemie, Biologie, Physik, Wirtschaft, Informatik, Technik usw.) als auch der Anwendung bereits bekannter mathematischer Methoden auf wohlbekannte Probleme.

Insbesondere gehören dazu

Die mathematischen Methoden werden auf ein Modell des betrachteten Systems angewandt.

Die Grenze zwischen reiner und angewandter Mathematik ist fließend, wie der Begriff angewandte Wissenschaft an sich problematisch ist. Die Zuordnung von Arbeiten in eines dieser beiden großen Felder hängt stark von der persönlichen Auffassung der beteiligten Mathematiker ab.

Angewandte Mathematik, die sich mit mathematischen Methoden beschäftigt (und damit ein Teilgebiet der Mathematik ist), ist von den Anwendungen der Mathematik in der Naturwissenschaft, den Ingenieurwissenschaften und anderen Bereichen zu unterscheiden. So wird man nicht sagen, dass ein Biologe, der mathematische Methoden der Populationsdynamik benutzt und bekannte Mathematik anwendet, selbst angewandte Mathematik betreibt – er verwendet sie lediglich. Häufig ziehen Nichtmathematiker diese Grenze nicht, und sie ist nicht immer klar. Die Verwendung der Mathematik zur Lösung industrieller Probleme wird Industriemathematik genannt; hier ist als Teilgebiet besonders die Technomathematik zu nennen, die sich mit aus der Technik stammenden Problemen befasst.

Literatur

  • William J. Clark, Robert A. Brechner: Applied Basic Mathematics, Addison-Wesley, 2008, ISBN 978-0-321-19407-7.
  • Kenneth Eriksson, Donald Estep, Claes Johnson: Angewandte Mathematik: Body & Soul, Springer Verlag, 2004/05, mehrere Bände, ISBN 978-3-540-24340-3, 978-3540228790, 978-3540214014.
  • Norbert Herrmann: Mathematik ist überall, Oldenbourg Wissenschaftsverlag, 2012, ISBN 978-3-486-71291-9.
  • James P. Keener: Principles Of Applied Mathematics, Westview Press, 2000, ISBN 978-0-7382-0129-0.
  • Burkhard Lenze: Basiswissen Angewandte Mathematik -Numerik, Grafik, Kryptik-, Springer-Vieweg, 2020, ISBN 978-3-658-30027-2.
  • J. David Logan: Applied Mathematics, Wiley-Interscience, 2006, ISBN 978-0-471-74662-1.
  • Josef Trölß: Angewandte Mathematik mit MathCad, Springer Verlag, 2007/08, mehrere Bände, ISBN 978-3-211-76742-9, 978-3211711781, 978-3211767467, 978-3211767481.
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9