Share to: share facebook share twitter share wa share telegram print page

 

Nombre de Betti

En topologia, els nombres de Betti són uns objectes topològics que Henri Poincaré[1] va demostrar que eren invariants i que va utilitzar per estendre la fórmula polièdrica a espais de dimensions més grans que tres. Per a cada dimensió d'un espai topològic en el que existeixen símplex, el nombre de Betti expressa el nombre de cicles independents en aquesta dimensió.[2]

Definició

Un tor té un component connectat, dos forats circulars (un al centre i l'altre a l'interior del tub) i un buit tridimensional: Els seus nombres de Betti són 1,2,1.


Intuïtivament, el nombre de Betti a cada dimensió, és el nombre de talls que es poden fer en una superfície n-dimensional sense dividir-la totalment. Així, per exemple, la seqüència de nombres de Betti d'un espai tridimensional seria: , on representen els nombres de talls que es poden fer en les dimensions 1, 2 i 3 i els zeros següents representen les demés dimensions inexistents.

Formalment, el n-éssim nombre de Betti és el rang del n-éssim grup homològic d'un espai topològic.[3]

Referències

  1. Poincaré els va posar el nom de Betti en honor del matemàtic italià Enrico Betti (1823-1892).
  2. Kline, pàgina 1173.
  3. Henle, pàgina 159.

Bibliografia

Enllaços externs

  • Barile, Margherita; Weisstein, Eric W. «Betti number». MathWorld--A Wolfram Web Resource. [Consulta: 24 febrer 2017].
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9