Share to: share facebook share twitter share wa share telegram print page

 

Límit de Chandrasekhar

El límit de Chandrasekhar (anomenat així en honor de Subrahmanyan Chandrasekhar) és la massa màxima possible que pot assolir una nana blanca. Equival al valor mínim de massa més enllà del qual la pressió de degeneració dels electrons no és capaç de contrarestar la força gravitatòria en una estrella, i es produeix un col·lapse. És igual a aproximadament 1,44 masses solars, però pot variar lleugerament en funció de la composició química de l'estrella. El seu valor fou calculat per l'astrofísic indi Subrahmanyan Chandrasekhar.

Quan una estrella exhaureix tot el seu combustible nuclear, la gravetat comença a col·lapsar-la. Si té una massa inferior al límit de Chandrasekhar, arribarà a un punt en què la pressió de degeneració aconseguirà deturar el col·lapse gravitatori i l'estrella es transformarà en nana blanca. Si, en canvi, l'estrella té una massa superior a 1,44 masses solars, llavors la gravetat superarà la pressió de degeneració i res no evitarà que continuï col·lapsant-se. Llavors, en lloc d'una nana blanca, l'estrella acabarà com una estrella de neutrons, un forat negre o (hipotèticament) com una estrella de quarks.

El límit sorgeix tenint en compte els efectes quàntics quan es considera el comportament dels electrons que proporcionen la pressió de degeneració que "aguanta" la nana blanca. Com que els electrons són fermions, no poden tenir els mateixos valors d'energia, de manera que és impossible que tots estiguin al valor mínim. Com que molts electrons es troben, doncs, en estats d'energia superiors, això provoca una certa pressió de naturalesa exclusivament quàntica i que evita el col·lapse gravitatori de l'estrella.

Chandrasekhar[1], eq. (36),[2], eq. (58),[3], eq. (43) dona un valor de:

En què μe és el pes molecular mitjà per electró, és la massa de l'àtom d'hidrogen, i és la constant adient amb la solució de l'equació de Lane-Emden. Numèricament, aquest valor és aproximadament (2/μe)² · 2.85 · 10³⁰ kg, o , on és la massa solar estàndard.[4] Com que és la massa de Planck, , el límit és de l'ordre de MPl3/mH².

Referències

  1. The Highly Collapsed Configurations of a Stellar Mass, S. Chandrasekhar, Monthly Notices of the Royal Astronomical Society 91 (1931), 456–466.
  2. The Highly Collapsed Configurations of a Stellar Mass (second paper), S. Chandrasekhar, Monthly Notices of the Royal Astronomical Society, 95 (1935), pp. 207--225.
  3. On Stars, Their Evolution and Their Stability, Nobel Prize lecture, Subrahmanyan Chandrasekhar, December 8, 1983.
  4. Standards for Astronomical Catalogues, Version 2.0, section 3.2.2, web page, accessed 12-I-2007.

Enllaços externs

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9