Share to: share facebook share twitter share wa share telegram print page

 

Deltoide

Aquest article tracta sobre un polígon. Si cerqueu el múscul, vegeu «Múscul deltoide».

En geometria, un deltoide o estel és un quadrilàter no regular, els costats contigus del qual són iguals dos a dos. És un trapezoide amb dos parells de costats consecutius iguals, sent el primer parell de costats diferent al segon parell de costats, també conegut com a trapezoide simètric o com a trapezoide biisòsceles.

Les diagonals d'un deltoide es tallen formant un angle recte i, per tant, la seva àrea és igual al semiproducte de les diagonals, això és:

També es pot trobar l'àrea com , en què i corresponen a la longitud dels costats diferents, i l'angle entre ells (com es mostra a la imatge). Si l'angle és recte, llavors es pot circumscriure una circumferència al deltoide, atès que per simetria al voltant de la diagonal més llarga es generen dos triangles rectangles congruents. En traçar la transversal de gravetat des del vèrtex corresponent a l'angle recte cap a la hipotenusa d'aquests triangles trobem el centre de la circumferència circumscrita que equidista dels vèrtexs dels dos triangles i, per tant, dels vèrtexs del deltoide.

Tot deltoide es pot circumscriure a una circumferència, atès que dues de les bisectrius dels seus angles coincideixen amb l'eix de simetria, al que les altres dues tallen en el mateix punt, que per tant es troba a la mateixa distància dels quatre costats. El deltoide pot ser còncau o convex, amb les mateixes propietats geomètriques. El deltoide còncau se sol anomenar punta de fletxa[cal citació], mentre que el deltoide convex se sol anomenar estel (kite en anglès).

Les diagonals d'un deltoide convex determinen quatre triangles rectangles, dos a dos congruents.

Vegeu també

Referències

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9