Share to: share facebook share twitter share wa share telegram print page

 

Abu-l-Wafà Muhàmmad al-Buzajaní

Plantilla:Infotaula personaAbu-l-Wafà
(en persa) ابوالوفا محمد بوزجانی
(en àrab) ابو الوفا محمد البوزجانی
(Abū l-Wafā Muḥammad al-Būzajānī)
Imatge
Retrat imaginari modern d'Abu-l-Wafà Modifica el valor a Wikidata
Biografia
Naixement(ar) ابو الوفا بوزجانی Modifica el valor a Wikidata
10 juny 940 Modifica el valor a Wikidata
Buzhgan (Califat Abbàssida) Modifica el valor a Wikidata
Mort15 juliol 998 Modifica el valor a Wikidata (58 anys)
Bagdad (Buwàyhides) Modifica el valor a Wikidata
ResidènciaBagdad
ReligióIslam Modifica el valor a Wikidata
Es coneix perFunció tangent
Llei dels sinus
Algunes identitats trigonomètriques
Activitat
Camp de treballMatemàtiques, astronomia, trigonometria i aritmètica Modifica el valor a Wikidata
Ocupaciómatemàtic, astrònom Modifica el valor a Wikidata
PeríodeEdat d'or de l'islam Modifica el valor a Wikidata
AlumnesIbn Yunus Modifica el valor a Wikidata
Influències


Abu-l-Wafà Muhàmmad al-Buzajaní, de nom complet Abu-l-Wafà Muhàmmad ibn Muhàmmad ibn Yahya ibn Ismaïl ibn al-Abbàs al-Buzajaní (àrab: ابوالوفا محمد بن محمد بن یحیی بن اسماعیل بن العباس البوزجانی, Abū l-Wafā Muḥammad b. Muḥammad b. Yaḥyà b. Ismāʿīl b. al-ʿAbbās a-Būzajānī) (Buzhgan, 10 de juny del 940 - Bagdad, juliol del 998), fou un gran matemàtic àrab d'origen persa, nascut a Buzajan, al Kuhistan.

Vida i obra

L'any 959 es va traslladar a Bagdad, aleshores la capital del califat, on va seguir la rica tradició astronòmica i matemàtica iniciada en el segle ix en aquesta ciutat, en la qual es va beneficiar del mecenatge dels emirs Àdud-ad-Dawla i del seu fill Xàraf-ad-Dawla,[1] que li van encarregar construir, juntament amb Al-Quhí un gran observatori astronòmic que contenia un quadrant de més de sis metres i un sextant de divuit metres.[2]

El seu text sobre aritmètica pràctica, Kitab fi ma yahtaj ilayh al-kuttab wa'l-ummal min 'ilm al-hisab, (per a escribes i comerciants),[3] escrit entre els anys 961 i 976, va tenir una ampla difusió. Està dividit en set parts i cadascuna d'aquestes en set capítols. Les tres primeres parts són purament matemàtiques: 1) ràtios, 2) multiplicació i divisió i 3) mesures (d'àrees de figures, volums de sòlids i distàncies d'objectes). Els altres quatre són d'ordre pràctic, amb molts problemes i les seves solucions: 4) impostos, 5) canvis i participacions, 6) altres (diferents monedes, pagaments de salaris, etc.) i 7) altres qüestions del comerç.

També va escriure un tractat de geometria pràctica, Kitab fi ma yahtaju al-sani' min al-a'mal al-hansiyya,[4] (per a artesans), però és menys original que l'anterior, i es limita a reproduir les fórmules conegudes d'Euclides, Arquimedes, Heró d'Alexandria, Pappus...

L'existència d'aquestes dues obres, la primera dirigida a funcionaris i comerciants, la segona a artesans, fa pensar que existien públics especialitzats que estaven acostumats a utilitzar aquests treballs en el seu nivell.[5] A més, en el primer utilitza la numeració aràbiga (de fet, índia) mentre que al segon conta amb paraules, per facilitar la comprensió dels qui no estan versats.

El seu tractat d'astronomia, Al-Kitab al-Kàmil ('Llibre complet'), segueix l'Almagest de Ptolemeu, però en simplifica i millora els càlculs. Per aconseguir-ho, estableix una taula de sinus dels angles més precisa i més detallada, establint el sinus de 30° amb molta més precisió que Ptolemeu. Alguns autors li atribueixen el descobriment de la llei esfèrica dels sinus al segle x.[6]

És en aquest camp de la trigonometria en què les seves aportacions són més rellevants,[7] ja que les funcions trigonomètriques eren indispensables per a la solució dels triangles esfèrics que sorgien de l'astronomia. Així, per exemple, va establir la "regla de les quatre quantitats": Si i són dos triangles esfèrics amb angles rectes a i i un angle comú , aleshores . D'aquest teorema, es dedueix immediatament un dels casos especials del teorema de Menelau.

Pel que fa a l'astronomia, va mantenir una intensa relació per correspondència amb Al-Biruní, de la qual es conserven diverses cartes.[8]

Segons sembla,[9] existeix a la Biblioteca d'El Escorial un manuscrit seu (Casiri-933) que no ha estat estudiat.

Obres

  • Kitab fi-ma yahtaju ilay-hi al-kuttab wa-l-ummal min ilm al-hissab ('Llibre sobre el que és necessari de l'art de l'aritmètica per a escribes i comerciants')
  • Al-Kitab al-Kàmil
  • Kitab fi-ma yahtaju ilay-hi as-sunnà fi-amal al-hàndassa o Kitab al-hàndassa ('Llibre del que és necessari de construccions geomètriques per a artesans')

Referències

  1. Morelon, 1996, p. 10.
  2. Johnson, 2014, p. 2.
  3. Aquest text no ha estat mai publicat en cap llenguatge modern. No obstant, se'n poden trobar referències en els llibres i articles de Woepeke, Luckey i Medovoy (vegeu Bibliografia). Es conserven dos manuscrits: un a la Universitat de Leiden i l'altre a la Biblioteca Nacional del Caire.
  4. Rosenfeld i Youschkevitch, 1996, p. 431.
  5. Djebbar, 2020, p. 48.
  6. Sesiano, 2000, p. 157.
  7. Katz, 1993, p. 256-257.
  8. Djebbar, 2020, p. 85, 159.
  9. Casiri, Miguel. Biblioteca Arabico-Hispana Escurialensis sive Librorum omnium Mss. Arabicè ab auctoribus magnam partem Arabo-Hispanis compositos Biblioteca Coenobii Escurialensis complectitur, recensio & explanatio. Antonius Perez de Soto imprimebat. Madrid, 1760-1770

Bibliografia

Enllaços externs

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9