Share to: share facebook share twitter share wa share telegram print page

 

Sistem persamaan linear

Sistem persamaan linear dengan tiga variabel, titik temunya adalah solusinya.

Sistem persamaan linear adalah sekumpulan persamaan linear yang terdiri dari beberapa variabel. Contohnya adalah:

Sistem ini terdiri dari tiga persamaan dengan tiga variabel x, y, z. Solusi sistem linear ini adalah nilai yang dapat menyelesaikan persamaan ini. Solusinya adalah:

Kata "sistem" di sini penting karena menunjukkan bahwa persamaan-persamaannya perlu dipertimbangkan bersamaan dan tidak berdiri sendiri.

Dalam ilmu matematika, teori sistem linear merupakan dasar aljabar linear. Aljabar linear sangat diperlukan dalam bidang fisika, kimia, ilmu komputer, dan ekonomi.

Contoh sederhana

Contoh sistem linear yang paling sederhana adalah sistem linear dengan dua persamaan dan dua variabel:

Salah satu cara untuk menyelesaikan sistem tersebut adalah dengan mengubah persamaan pertama menjadi seperti ini:

Kemudian masukkan nilai x ke dalam persamaan kedua:

Hasilnya adalah satu persamaan dengan satu variabel saja, yaitu . Dari persamaan ini diketahui bahwa , dan y bisa dimasukkan ke dalam persamaan pertama untuk mencari . Hasilnya adalah .

Bentuk umum

Sistem persamaan linear m dengan n yang tidak diketahui dapat ditulis seperti ini

adalah variabel yang tidak diketahui, adalah koefisiennya dan adalah konstantanya.

Persamaan vektor

Persamaan matriks

A di sini adalah matriks m×n, x adalah vektor kolom dengan entri n dan b vektor kolom dengan entri m.

Cara menyelesaikan

Eliminasi variabel

Contohnya, dalam sistem berikut:

Berdasarkan persamaan pertama, x = 5 + 2z − 3y, dan nilai ini bisa dimasukkan ke dalam persamaan kedua dan ketiga:

Dari persamaan pertama dapat diketahui bahwa y = 2 + 3z, dan jika y dimasukkan ke dalam persamaan kedua, dapat diketahui bahwa z = 2. Dari sini z dapat dimasukkan ke persamaan yang lain dan hasilnya adalah y = 8 dan x = −15. Maka dari itu, (x, y, z) = (−15, 8, 2).

Pengurangan baris

Metode pengurangan baris atau eliminasi Gauss menyelesaikan sistem persamaan linear dengan mewakilkan persamaan-persamaan yang ada dalam bentuk matriks:

Matriks ini lalu diubah dengan menukar posisi baris, menambahkan atau mengurangi satu baris dengan baris yang lain, atau mengalikan satu baris dengan skalar. Berikut adalah contohnya:

Dari sini dapat disimpulkan bahwa x = −15, y = 8, dan z = 2.

Aturan Cramer

Aturan Cramer adalah rumus untuk mencari penyelesaian sistem persamaan linear dengan memakai determinan suatu matriks dan matriks lain yang disusun dengan mengganti salah satu kolom dengan vektor yang terdiri dari angka di sebelah kanan persamaannya. Sebagai contoh:

Cara menyelesaikannya adalah

Referensi

Bacaan lebih lanjut

  • Siswono, Tatag Yuli Eko (2007). Matematika 2 SMP dan MTs Untuk Kelas VIII. Jakarta: Esis/Erlangga. ISBN 979-734-666-8.  (Indonesia)
  • Kurnianingsih, Sri (2007). Matematika SMA dan MA 1A Untuk Kelas X Semester 1. Jakarta: Esis/Erlangga. ISBN 979-734-500-9.  (Indonesia)
Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9