Share to: share facebook share twitter share wa share telegram print page

 

Persamaan Laplace

Pierre-Simon Laplace

Dalam matematika dan fisika, persamaan Laplace adalah persamaan diferensial parsial orde dua yang dinamankan dengan nama Pierre-Simon Laplace, yang pertama kali mempelajari sifat-sifatnya. Persamaan ini umum ditulis dalam bentukataudengan simbol menyatakan operator Laplace,[note 1] menyatakan operator divergensi (juga disimbolkan dengan "div"), menyatakan operator gradien (juga disimbolkan dengan "grad"), dan adalah sebuah fungsi bernilai real yang terdiferensialkan dua kali. Persamaan ini juga mengartikan operator Laplace memetakan sebuah fungsi bernilai skalar ke sebuah fungsi bernilai skalar yang lain.

Jika ruas kanan persamaan Laplace berisi sebuah fungsi , maka akan didapatkan bentukPersamaan ini disebut dengan persamaan Poisson, sebuah perumuman dari persamaan Laplace. Persamaan Laplace dan persamaan Poisson adalah contoh termudah dari persamaan diferensial eliptik parsial. Selain itu, persamaan Laplace merupakan kasus khusus dari persamaan Helmholtz.

Solusi kontinu dan terdiferensialkan dua kali dari persamaan Laplace akan berupa fungsi harmonik,[1] yang memiliki peran penting dalam banyak cabang fisika, contohnya di elektrostatika, gravitasi, dan dinamika fluida. Dalam konduksi panas, persamaan Laplace menyatakan persamaan panas yang tunak (steady-state).[2] Secara umum, persamaan Laplace menyatakan kondisi keseimbangan, atau kondisi yang secara eksplisit tidak bergantung pada waktu.

Bentuk dalam sistem koordinat yang berbeda

Persamaan Laplace memiliki bentuk persamaan yang berbeda, tergantung pada sistem koordinat yang digunakan. Dalam sistem koordinat ortogonal (Kartesius), persamaan Laplace dapat dijabarkan menjadi[3]Dalam sistem koordinat silinder,[3]Dalam sistem koordinat bola, dengan menggunakan konvensi ,[3]Secara umum, persamaan Laplace dalam koordinat kurvilinear dapat dijabarkan menjadi bentukatau

Kondisi batas

Persamaan Laplace pada sebuah anulus (radius dalam r = 2 dan radius luar R = 4) dengan kondisi batas Dirichlet u(r=2) = 0 dan u(R=4) = 4 sin(5 θ).

Masalah Dirichlet untuk persamaan Laplace menanyakan cara mendapatkan sebuah solusi φ pada suatu domain D sehingga φ pada batas dari domain D akan sama dengan suatu fungsi yang ditentukan sebelumnya. Karena operator Laplace muncul dalam persamaan panas, salah satu interpretasi fisik dari masalah ini adalah sebagai berikut: Buat suhu pada batas suatu domain sesuai spesifikasi kondisi batas. Lalu biarkan panas mengalir di domain hingga keadaan tunak dicapai; dalam kondisi ini suhu pada tiap titik tidak akan berubah. Distribusi suhu di domain ini adalah solusi dari masalah Dirichlet yang bersesuaian.

Solusi dari persamaan Laplace disebut dengan fungsi harmonik; fungsi ini analitik pada domain yang memenuhi persamaan Laplace. Jika ada dua fungsi menjadi solusi persamaan Laplace, maka penjumlahan (atau sembarang kombinasi linear) dari keduanya juga merupakan solusi. Sifat ini, yang disebut prinsip superposisi, sangat berguna karena memungkinkan solusi dari permasalahan yang kompleks dibuat dengan menjumlahkan solusi-solusi yang sederhana.

Catatan

  1. ^ Simbol delta, Δ, juga umum digunakan untuk menyatakan perubahan suatu besaran, contohnya . Penggunaan simbol delta untuk menyatakan operator Laplace seharusnya tidak menimbulkan kebingungan.

Referensi

  1. ^ Stewart, James. Calculus : Early Transcendentals. 7th ed., Brooks/Cole, Cengage Learning, 2012. Chapter 14: Partial Derivatives. p. 908. ISBN 978-0-538-49790-9.
  2. ^ Zill, Dennis G, and Michael R Cullen. Differential Equations with Boundary-Value Problems. 8th edition / ed., Brooks/Cole, Cengage Learning, 2013. Chapter 12: Boundary-value Problems in Rectangular Coordinates. p. 462. ISBN 978-1-111-82706-9.
  3. ^ a b c Griffiths, David J. Introduction to Electrodynamics. 4th ed., Pearson, 2013. Inner front cover. ISBN 978-1-108-42041-9.

Bacaan lebih lanjut

Pranala luar

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9