Share to: share facebook share twitter share wa share telegram print page

 

Lingkaran satuan

Lingkaran satuan.

Dalam matematika, lingkaran satuan adalah sebuah lingkaran dengan panjang jari-jari sebesar 1 satuan. Seringkali, terutama dalam trigonometri, lingkaran satuan adalah lingkaran yang berpusat pada titik (0, 0) pada sistem koordinat Kartesius dalam 2 dimensi. Dalam topologi, lingkaran ini biasanya disimbolkan dengan S1.

Apabila (x, y) adalah suatu titik pada keliling lingkaran satuan, maka x dan y merupakan panjang kaki sebuah segitiga siku-siku yang panjang sisi miringnya sebesar 1. Maka dari itu, berdasarkan teorema Pythagoras, x dan y memenuhi persamaan:

Karena x2 = (−x)2 untuk setiap x, dan karena hasil pencerminan setiap titik pada lingkaran satuan terhadap sumbu-x ataupun sumbu-y juga terkandung dalam lingkaran satuan, persamaan di atas berlaku untuk semua titik (x, y) pada lingkaran satuan, tidak hanya yang kuadran pertama saja.

Pada bidang kompleks

Lingkaran satuan dapat dipandang sebagai bilangan kompleks satuan, atau dengan kata lain, himpunan bilangan kompleks z dalam bentuk untuk setiap t (lihat juga: cis). Relasi ini adalah Rumus Euler. Lingkaran ini juga bisa didefinisikan sebagai himpunan bilangan kompleks yang memenuhi

Fungsi trigonometri

Fungsi kosinus dan sinus dengan sudut θ dapat didefinisikan dengan menggunakan lingkaran satuan sebagai berikut: jika (x, y) merupakan titik pada lingkaran satuan, dan jika sinar dari titik (0, 0) ke (x, y) membentuk sudut θ dari sumbu-x positif (putaran tersebut berlawanan arah jarum jam, yang berarti bernilai positif), maka dan

Persamaan x2 + y2 = 1 menghasilkan relasi:

yang biasa dikenal dengan identitas Phytagoras. Lingkaran satuan juga menunjukkan kalau sinus dan kosinus merupakan fungsi periodik dengan identitas

dan

untuk setiap bilangan bulat k.

Segitiga yang dibentuk pada lingkaran satuan juga bisa digunakan untuk mengilustrasikan sifat periodik dari fungsi-fungsi trigonometri. Pertama, buatlah jari-jari OP dari titik asal O menuju titik P(x1,y1) pada lingkaran satuan, sedemikian sehingga sudut t (dengan 0 < t < π2) terbentuk dengan sumbu-x positif. Sekarang perhatikan titik Q(x1,0) dan segmen garis PQ ⊥ OQ. Hasil akhirnya adalah segitiga siku-siku △OPQ dengan ∠QOP = t. Karena panjang PQ adalah y1, panjang OQ adalah x1, dan OP panjangnya 1 (karena merupakan jari-jari lingkaran satuan), maka sin(t) = y1 dan cos(t) = x1.

Setelah menyusun persamaan tersebut, buatlah jari-jari OR dari titik asal ke titik R(−x1,y1) pada lingkaran, sedemikian sehingga sudut t tadi terbentuk dengan sumbu-x negatif. Sekarang perhatikan titik S(−x1,0) dan segmen garis RS ⊥ OS. Hasil akhirnya adalah segitiga siku-siku △ORS dengan ∠SOR = t. Dari sini bisa terlihat bahwa ∠ROQ = π − t, sehingga koordinat R ialah (cos(π − t), sin(π − t)) serupa seperti P yang berada pada titik (cos(t), sin(t)).

Oleh karena (−x1, y1) sama dengan (cos(π − t), sin(π − t)) dan (x1,y1) sama dengan (cos(t), sin(t)), maka dapat disimpulkan sin(t) = sin(π − t) dan −cos(t) = cos(π − t). Dengan argumen serupa, dapat disimpulkan tan(π − t) = −tan(t), lantaran tan(t) = y1x1 dan tan(π − t) = y1x1. Contoh sederhana pada relasi di atas dapat terlihat pada persamaan sin(π4) = sin(4) = 12.

Secara geometris, semua fungsi trigonometri dari sudut θ (theta) dapat dikonstruksi dalam lingkaran sauan yang berpusat pada O.

Saat berurusan dengan segitiga siku-siku, sinus, kosinus, dan fungsi trigonometri lainnya baru masuk akal apabila ukuran sudutnya lebih dari nol dan kurang dari π2. Namun, jika didefinisikan dengan lingkaran satuan, fungsi-fungsi tadi menghasilkan nilai yang bermakna untuk setiap sudut yang bernilai riil – termasuk sudut yang lebih dari 2π. Malahan, semua enam fungsi standar trigonometri – sinus, kosinus, tangen, kotangen, sekan, dan kosekan, beserta fungsi-fungsi turunannya, seperti versin and exsec – dapat didefinisikan secara geometris dengan lingkaran satuan.

Dengan menggunakan lingkaran satuan, nilai fungsi trigonometri apapun dapat dihitung dengan mudah menggunakan rumus jumlah dan selisish sudut.

Grup lingkaran

Bilangan kompleks dapat dipandang sebagai titik pada 2 dimensi. Lebih tepatnya, bilangan a + bi dapat dipandang sebagai titik (a, b). Dengan cara pandang seperti ini, lingkaran satuan adalah grup terhadap perkalian, yang disebut grup lingkaran; biasanya disimbolkan dengan Di bidang, perkalian oleh cos θ + i sin θ menghasilkan rotasi yang berlawanan ara jarum jam sebesar θ. Grup ini mempunyai aplikasi penting dalam matematika dan sains.

Dinamika kompleks

Lingkaran satuan dalam dinamika kompleks.

Himpunan Julia dari sistem dinamis diskrit nonlinier dengan fungsi evolusi:merupakan lingkaran satuan. Ini adalah kasus paling sederhana sehingga banyak dipakai dalam mempelajari sistem dinamis.

Lihat pula

Pranala luar

Kembali kehalaman sebelumnya


Index: pl ar de en es fr it arz nl ja pt ceb sv uk vi war zh ru af ast az bg zh-min-nan bn be ca cs cy da et el eo eu fa gl ko hi hr id he ka la lv lt hu mk ms min no nn ce uz kk ro simple sk sl sr sh fi ta tt th tg azb tr ur zh-yue hy my ace als am an hyw ban bjn map-bms ba be-tarask bcl bpy bar bs br cv nv eml hif fo fy ga gd gu hak ha hsb io ig ilo ia ie os is jv kn ht ku ckb ky mrj lb lij li lmo mai mg ml zh-classical mr xmf mzn cdo mn nap new ne frr oc mhr or as pa pnb ps pms nds crh qu sa sah sco sq scn si sd szl su sw tl shn te bug vec vo wa wuu yi yo diq bat-smg zu lad kbd ang smn ab roa-rup frp arc gn av ay bh bi bo bxr cbk-zam co za dag ary se pdc dv dsb myv ext fur gv gag inh ki glk gan guw xal haw rw kbp pam csb kw km kv koi kg gom ks gcr lo lbe ltg lez nia ln jbo lg mt mi tw mwl mdf mnw nqo fj nah na nds-nl nrm nov om pi pag pap pfl pcd krc kaa ksh rm rue sm sat sc trv stq nso sn cu so srn kab roa-tara tet tpi to chr tum tk tyv udm ug vep fiu-vro vls wo xh zea ty ak bm ch ny ee ff got iu ik kl mad cr pih ami pwn pnt dz rmy rn sg st tn ss ti din chy ts kcg ve 
Prefix: a b c d e f g h i j k l m n o p q r s t u v w x y z 0 1 2 3 4 5 6 7 8 9