כוכב נייטרוניםכוכב נֵיטְרוֹנִים הוא כוכב דחוס, שעשוי ברובו מנייטרונים. הוא נוצר כתוצאה מקריסה כבידתית של כוכב שבו הסתיימה שרשרת ההיתוך הגרעיני. במהלך הקריסה הכבידתית מתמזגים אלקטרונים ופרוטונים לנייטרונים. כוכב הנייטרונים אינו ממשיך בקריסתו, מכיוון שכנגד כוח הכבידה פועל לחץ ניוון, כלומר לחץ הנובע מעקרון האיסור של פאולי בין הנייטרונים שמרכיבים אותו (מכיוון שניטרונים הם פרמיונים). לחץ דומה פועל בננס לבן, שם הדחייה נובעת מאותו עיקרון, אלא ששם הוא פועל בין האלקטרונים. צפיפותם של כוכבי נייטרונים עצומה, והיא מסדר-גודל של מאות מיליוני טון לסמ"ק.[1] הסיבה לכך היא שבין הנייטרונים בכוכב נייטרוני לא מפריד ואקום, בשונה בחומרים רגילים: בחומר רגיל גרעין האטום תופס 1 חלקי 10,000 עד 1 חלקי 100,000 מנפח האטום כולו, בעוד שבליבתו של כוכב נייטרוניים הנייטרונים "צמודים" זה לזה, ולכן צפיפותו דומה לצפיפות של גרעין אטום. בשל צפיפותם הרבה, לכוכבי הנייטרונים כבידה משטחית גבוהה, ומהירות הבריחה מהם היא עד חצי ממהירות האור. בגלל חוק שימור התנע הזוויתי, כוכבי הנייטרונים, שמומנט ההתמד שלהם קטן באופן ניכר כתוצאה מהקריסה, מסתובבים במהירויות זוויתיות גבוהות ביותר, עד כדי מאות סיבובים בשנייה. בשל שימור המומנט המגנטי שלהם, הם הופכים לרוב להיות פולסרים (מלשון pulse - "פעימה" באנגלית). כוכבי נייטרונים נוהגים להימצא במצב די שכיח של קשר כבידתי עם עוד כוכב נייטרונים עד אשר הם מתנגשים ומתפוצצים באירוע הדומה לסופרנובה הנקרא קילונובה. בזמן הפיצוץ גזים חמים והרבה קרני גאמה מתפזרים ברחבי היקום. פיצוץ הקילונובה נחשב לפיצוץ השני החזק ביקום אחרי התנגשות של שני חורים שחורים אולטרה מסיבים. אחרי הפיצוץ המסה שלא התפזרה בחלל קורסת לחור שחור לרוב עם מסה בין 10 ל-20 מסות שמש. חקר הכוכבים הנייטרוניםקיומם של כוכבי נייטרונים נחזה ב-1933, שנה לאחר גילוי הנייטרון עצמו, על ידי האסטרופיזיקאים ולטר באדה ופריץ צוויקי על-סמך עבודותיו של הפיזיקאי ההודי סוברהמניאן צ'נדראסקאר. אולם, כוכבי הנייטרונים היו בגדר רעיון תאורטי גרידא עד לשנת 1967, שבה קבוצת אסטרונומים בריטיים גילתה את הפולסר הראשון. בחודש יוני 2017 שוגר NICER, טלסקופ בתחום קרני הרנטגן, והוא צפוי להיות מותקן במהלך השנה על תחנת החלל הבינלאומית.[2] ב-16 באוקטובר 2017 פורסם כי צוות מחקר בינלאומי הצליח לתעד לראשונה התנגשות ומיזוג של שני כוכבי נייטרונים. המיזוג, אשר אירע לפני כ-100 מיליון שנה, תועד באמצעות גלאי פרויקט LIGO המשמש לצפייה בגלי כבידה, שעל בנייתו זכו האמריקאים ריינר וייס, בארי בריש וקיפ תורן בפרס נובל לפיזיקה.[3][4] היווצרותכוכב נייטרונים נוצר במהלך סופרנובה מסוג 2 של כוכב בעל מסה של 8 עד 20 מסות שמש, או כתוצאה מסופרנובה מסוג 1, לאחר שתהליך ההיתוך הגרעיני מגיע ליסוד ברזל הוא מפסיק לבצע את שרשרת ההיתוך שכן אין יותר רווח באנרגיה לאחר היתוך גרעיני ברזל, ובעצם ממשיך רק להגדיל את מסת הליבה, כאשר הליבה מגיעה למסה קריטית, לחץ ניוון האלקטרונים שמחזיק את אטומי הברזל קורס ובעצם כל הליבה מתכווצת בבת אחת לכוכב ניטרונים. עתה מוחזקת הליבה על ידי לחץ ניוון ניטרונים. עקב הכיווץ נוצר גל הלם אדיר שיוצא החוצה ומשליך מעליו את כל מעטפת הכוכב מעל הליבה של כוכב הניטרונים. מסתו של כוכב נייטרונים לאחר הקריסה היא 1.2 פעמים מסת השמש[5] עד 3 מסות שמש (גבול טולמן-אופנהיימר-וולקוף), כאשר קוטרו מונה קילומטרים ספורים בלבד. מבנהקליפתו החיצונית של הכוכב מורכבת מברזל, שנדחס בלחץ גבוה. לאחר שכבת מעבר שכנראה עשויה מאטומים דחוסים ביותר עד שהם התגבשו לצורת צינורות ושכבות המכונה פסטה גרעינית, מגיעה השכבה העיקרית של הכוכב, שברובו עשוי מנייטרונים, כאשר ביניהם מצויים היפרונים (באריונים המכילים קווארק מוזר). ההרכב המדויק של ליבת הכוכב אינו ידוע, כאשר ההשערות נעות בין ליבה העשויה נייטרונים דחוסים יותר, להיפרונים, ועד השערת וויטן הגורסת שהליבה עשויה מחומר מוזר שיציב מבחינה תרמודינמית גם ללא כבידה (השערה אשר אינה נתמכת בתצפיות או חישובים מדויקים). ראו גםקישורים חיצוניים
הערות שוליים
|