In 2014, Hungary counted 2,651 full-time-equivalent researchers per million inhabitants, steadily increasing from 2,131 in 2010 and compares with 3,984 in the US or 4,380 in Germany.[6] Hungary's high technology industry has benefited from both the country's skilled workforce and the strong presence of foreign high-tech firms and research centres. Hungary also has one of the highest rates of filed patents, the 6th highest ratio of high-tech and medium high-tech output in the total industrial output, the 12th-highest research FDI inflow, placed 14th in research talent in business enterprise and has the 17th-best overall innovation efficiency ratio in the world.[7]
The key actor of research and development in Hungary is the National Research, Development and Innovation Office (NRDI Office), which is a national strategic and funding agency for scientific research, development and innovation, the primary source of advice on RDI policy for the Hungarian government, and the primary RDI funding agency. Its role is to develop RDI policy and ensure that Hungary adequately invest in RDI by funding excellent research and supporting innovation to increase competitiveness and to prepare the RDI strategy of the Hungarian Government, to handle the National Research, Development and Innovation Fund, and represents the Hungarian Government and a Hungarian RDI community in international organizations.[8]
The Hungarian Academy of Sciences and its research network is another key player in Hungarian R&D and it is the most important and prestigious learned society of Hungary, with the main responsibilities of the cultivation of science, dissemination of scientific findings, supporting research and development and representing Hungarian science domestically and around the world.[9]
BME University is considered the world's oldest institute of technology which has university rank and structure. It was the first institute in Europe to train engineers at university level.[11]
Semmelweis University in the recently released QS World University Rankings 2016 listed among the world's best 151–200 universities in the categories of medicine and pharmacy. According to the international ranking in the field of medicine Semmelweis University ranked first among the Hungarian universities. The "Modern Medical Technologies at Semmelweis University" project ensuring institution's place among the leading research universities in four main areas: Personalised medicine; Imaging processes and bioimaging: from molecule to the human being; Bio-engineering and nanomedicine; Molecular medicine.
Budapest University of Technology and Economics's research activities encouraged and is present on all levels from the B.Sc. through to the doctoral level. During the 1980s the BUTE was among the first in the Eastern bloc to recognise the importance of participating in research activities with institutions in Western Europe. Consequently, the university has the most well-established research relationships with Western European universities. There are many famous alumni at university: Dennis Gabor who was the inventor of holography got his Nobel Prize in Physics in 1971, George Oláh got his Nobel Prize in Chemistry in 1994. Nowadays the university has 110 departments, 1100 lecturers, 400 researchers.
University of Szeged internationally acknowledged, competitive research activities are essential parts of its educational mission, and it is particularly important to ensure the institution's position as a research university. Its research and creative activities include basic and applied research, creative arts, product and service development.
University of Debrecen with a student body of about 30 thousand is one of the largest institutions of higher education in Hungary and its priority areas of research include: molecular science; physical, computational and material science; medical, health, environmental and agricultural science; linguistics, culture and bioethics.
University of Pécs is one of the leading research universities in the country with a huge professional research background. The Szentágothai Research Centre of the University of Pécs is covers all aspects of education, research and innovation in the fields of biomedical, natural and environmental sciences. The infrastructure, instrumentation and expertise of the 22 research groups operating on the premises provide an excellent basis to become a well-known, leading research facility in Hungary as well as in Central Europe with an extensive and fruitful collaboration network.
Hungarian Academy of Sciences's research network also contributes significantly to research output of Hungary. It comprises 15 legally independent research institutions and more than 130 research groups at universities co-financed by the academy. This research network focusing above all on discovery research is unparalleled in Hungary, accounting for one-third of all scientific publications produced in the country. Citation indices of publications posted by the academy's researchers surpass the Hungarian average by 25.5%. The research network addresses discovery and targeted research, in cooperation with universities and corporations. The main components of the network are the MTA Szeged Research Centre for Biology, the MTA Institute for Computer Science and Control, the MTA Rényi Institute of Mathematics, the MTA Research Centre for Natural Sciences, the MTA Institute of Nuclear Research, the MTA Institute of Experimental Medicine, MTA Wigner Research Centre for Physics, the MTA Centre for Energy Research and MTA Research Centre for Astronomy and Earth Sciences (involved with Konkoly Observatory).[13]
Venture capital market
According to the HVCA (Hungarian Venture Capital and Private Equity Association) report joint efforts of the venture capital and private equity industry and the Hungarian government, the access of Hungarian enterprises to venture capital and private equity funding could be significantly increased. During the past two decades these financial intermediaries have also played an increasingly important role in the Hungarian economy. During this period, venture capital and private equity funds invested close to 4 billion US Dollars into more than 400 Hungarian enterprises.
However, so-called buyout transactions have accounted for about two thirds of the total volume of those investments, which were aimed at the acquisition of shares in mature companies that have been operating profitably for several years. The volume of investments in early and expansive stage companies was significantly lower. Only about 30% of the total volume of investments was directed at companies in the expansive stage and less than 5% at early stage companies. This is also reflected by the fact that over the last two decades slightly more than 10% of the total volume of venture capital and private equity investments came from funds focusing on early stage companies. The remaining close to 90% was invested by private equity funds focusing on more mature companies with greater economic strength. As for the number of transactions, companies in the expansive stage were targeted by the largest number of venture capital and private equity investments: such investments accounted for almost 60% of Hungarian transactions. Nearly a third of transactions involved early stage companies. Buy-out deals represented approximately 10% of transactions by number. Several factors have contributed to this growth. These include tax exemptions on Hungarian venture capital, funds established in conjunction with large international banks and financial companies and the involvement of major organizations desirous to capitalize on the strengths of Hungarian start up and high-tech companies. In recent years, the share of venture capital invested in the growth stages of enterprises has flourished at the expense of early stage investments.[14]
Since the first Hungarian won a Nobel Prize in 1905, the country has added a further 14 to its cache.[15] With scientists, writers and economists all honored in the prestigious awards:
"for his demonstration of the heterogeneous nature of colloid solutions and for the methods he used, which have since become fundamental in modern colloid chemistry"
"for his contributions to the theory of the atomic nucleus and the elementary particles, particularly through the discovery and application of fundamental symmetry principles"
"for experimental methods that generate attosecond pulses of light for the study of electron dynamics in matter"
Hungarian Scientific Olympic Achievements
Hungary has excelled at the scientific Olympiads, ever since the beginnings.
Best result is in maths with absolute cumulative 4th place until 2019, behind China, Russia and US. Per capita result is a world leader.[17]
Results in physics is just somewhat weaker. 9th place (3rd best in Europe). Per capita result is also a world leader.
Chemistry (1968–2019) results give 8th place and 4th place in Europe. This is also a world leader per capita.
However the results have weakened lately.
Hungarian inventions
The English word "coach" came from the Hungariankocsi ("wagon from Kocs" referring to the village in Hungary where coaches were first made).[18][19]
In 1827, Ányos Jedlik invented an early electric motor. He created the first device to contain the three main components of practical direct current motors: the stator, rotor and commutator. He built the first generator which used, instead of permanent magnets, two electromagnets opposite to each other to induce the magnetic field around the rotor.[1][2] This was also the discovery of the principle of "dynamo self-excitation".
David Schwarz invented and designed the first flyable rigid airship (aluminium-made). Later, he sold his patent to German Graf Zeppelin, who built the so-called Zeppelin airship.
The three-dimensional scanner microscope 3D Alba (international patent in 2007) was developed by Katona Gergely and Rózsa Balázs.[27]
In August 1939, Szilárd approached his old friend and collaborator Albert Einstein and convinced him to sign the Einstein–Szilárd letter, lending the weight of Einstein's fame to the proposal. The letter led directly to the establishment of research into nuclear fission by the U.S. government and ultimately to the creation of the Manhattan Project. (Szilárd, with Enrico Fermi, patented the nuclear reactor).
Some internationally well-known figures of today include: mathematician László Lovász, physicist Albert-László Barabási, physicist Ferenc Krausz, chemist Julius Rebek, chemist Árpád Furka, biochemist Árpád Pusztai and the highly controversial former NASA-physicist Ferenc Miskolczi, who denies the green-house effect.[35] According to Science Watch: In Hadron research Hungary has most citations per paper in the world.[36] In 2011 neuroscientists György Buzsáki, Tamás Freund and Peter Somogyi were awarded with The Brain Prize ("Danish Nobel Prize" in neurology)" for "brain circuits involved in memory".[37]Péter Horváth,[38] in Szeged, is a biophysicist, explaining minimal changes in a cell.
After the fall of the communist dictatorship (1989), a new scientific prize, the János Bolyai Creative Award (Bolyai János alkotói díj), was established (1997), politically unbiased and of the highest international standard.
Tibor Gánti got full recognition first after his death for his Chemoton-theory which explains how life started.
Early milestones in technology and infrastructure (1700–1918)
The first steam engines of continental Europe was built in Újbánya – Köngisberg, Kingdom of Hungary (Today Nová Baňa Slovakia) in 1722. They were similar to the Newcomen engines, it served on pumping water from mines.[72][73][74][75]
Railways
The first Hungarian steam-locomotive railway line was opened on 15 July 1846, between Pest and Vác.[76] By 1910, the total length of the rail networks of the Hungarian Kingdom had reached 22,869 km (14,210 mi); the Hungarian network linked more than 1,490 settlements. This has ranked Hungarian railways as the sixth-most dense in the world (ahead of countries as Germany or France).[77]
Locomotive engine and railway vehicle manufacturers before World War One (engines and wagons, bridge and iron structures) were the MÁVAG company in Budapest (steam engines and wagons) and the Ganz company in Budapest (steam engines, wagons, the production of electric locomotives and electric trams started from 1894).[78] and the RÁBA Company in Győr.
The Ganz Works identified the significance of induction motors and synchronous motors commissioned Kálmán Kandó (1869–1931) to develop it. In 1894, Kálmán Kandó developed high-voltage three-phase AC motors and generators for electric locomotives. The first-ever electric rail vehicle manufactured by Ganz Works was a 6 HP pit locomotive with direct current traction system. The first Ganz made asynchronous rail vehicles (altogether 2 pieces) were supplied in 1898 to Évian-les-Bains (Switzerland), with a 37-horsepower (28 kW), asynchronous-traction system. The Ganz Works won the tender of electrification of railway of Valtellina Railways in Italy in 1897. Italian railways were the first in the world to introduce electric traction for the entire length of a main line, rather than just a short stretch. The 106-kilometre (66 mi) Valtellina line was opened on 4 September 1902, designed by Kandó and a team from the Ganz works.[79] The electrical system was three-phase at 3 kV 15 Hz. The voltage was significantly higher than used earlier, and it required new designs for electric motors and switching devices.[80][81] In 1918,[82] Kandó invented and developed the rotary phase converter, enabling electric locomotives to use three-phase motors whilst supplied via a single overhead wire, carrying the simple industrial frequency (50 Hz) single phase AC of the high voltage national networks.[83]
The first steam railcar built by Ganz and de Dion-Bouton
The four-cylinder 2,950 hp (2,200 kW) MÁV Class 601 was the strongest steam locomotive of pre WW1 Europe.[84][85][86]
Ganz AC electric locomotive prototype (1901 Valtellina, Italy)
Electric locomotive RA 361 (later FS Class E.360) by Ganz for the Valtellina line, 1904
The world's first locomotive with a phase converter was Kandó's V50 locomotive (only for demonstration and testing purposes)
The first electric tramway was built in Budapest in 1887, which was the first tramway in Austria-Hungary. By the turn of the 20th century, 22 Hungarian cities had electrified tramway lines in Kingdom of Hungary.
Date of electrification of tramway lines in the Kingdom of Hungary:
The Budapest metro Line 1 (originally the "Franz Joseph Underground Electric Railway Company") is the second oldest underground railway in the world[92] (the first being the London Underground's Metropolitan Line), and the first on the European mainland. It was built from 1894 to 1896 and opened in Budapest on 2 May 1896.[93] Since 2002, the M1 line was listed as a UNESCOWorld Heritage Site.[94][95]
The M1 line became an IEEE Milestone due to the radically new innovations in its era: "Among the railway’s innovative elements were bidirectional tram cars; electric lighting in the subway stations and tram cars; and an overhead wire structure instead of a third-rail system for power."[96]
Automotive industry
The spread of the Industrial Revolution in Hungary, along with the technological changes brought about by progress, made it clear by the end of the 19th century that the end of horse-drawn transport was approaching. Around 1818, Farkas Bolyai and Péter Bodor presented their steam carriage in Marosvásárhely, in 1819, József Horti-Horváth showcased the flywheel omnibus, Ányos Jedlik stirred the interest with his electric-powered vehicle model and carriage. Developments continued in the latter half of the century: in 1876, György Wessely received a patent for a self-propelled steam carriage, and Ferenc Preiner also demonstrated a steam-powered carriage. By 1890, Ferenc Korda had created the first battery-operated electric car in Hungary. János Csonka had a significant impact on further development in the industrial sector of petrol engines; in addition to inventing the carburetor, he designed a petrol engine driven mail collection car for the Hungarian Post. The vehicle was manufactured by the Ganz company and was put into circulation in November 1900.[97]
The first Hungarian hydrogen-filled experimental balloons were built by István Szabik and József Domin in 1784.
The first Hungarian designed and produced airplane to be powered by a Hungarian aero engine was flown in 1909 at Rákosmező.[104] The International Air-race was organized in Budapest, Rákosmező in June 1910. The earliest Hungarian radial engine powered airplane was built in 1913. Between 1913 and 1918, the Hungarian aircraft industry began developing. The three mist significant were UFAG Hungarian Aircraft Factory (1912), Hungarian General Aircraft Factory (1916) and the Hungarian Lloyd Aircraft engine factory (at Aszód (1916),[105] and Marta in Arad (1914).[106] During the WW I, fighter planes, bombers and reconnaissance planes were produced in these factories. The most important aero engine factories of the period were Weiss Manfred Works, Ganz Works, and Hungarian Automobile Joint-stock Company Arad.[citation needed]
During the interwar and WWII periods, Hungarian designs continued to be developed and flown, however for the most part German types were modified and/or manufactured under license. Examples include those developed or manufactured by Weiss Manfred and the RMI (Repülo Muszaki Intézet, or Aviation Technical Institute).
A generator assembly hall of the Ganz Works (1922)
Power plants, generators and transformers
In 1878, the Ganz company's general manager András Mechwart (1853–1942) founded the Department of Electrical Engineering headed by Károly Zipernowsky (1860–1939). Engineers Miksa Déri (1854–1938) and Ottó Bláthy (1860–1939) also worked at the department producing direct-current machines and arc lamps.
In autumn 1884, Károly Zipernowsky, Ottó Bláthy and Miksa Déri (ZBD), three engineers associated with the Ganz factory, had determined that open-core devices were impracticable, as they were incapable of reliably regulating voltage.[107] In their joint 1885 patent applications for novel transformers (later called ZBD transformers), they described two designs with closed magnetic circuits where copper windings were either a) wound around iron wire ring core or b) surrounded by iron wire core.[108] The two designs were the first application of the two basic transformer constructions in common use to this day, which can as a class all be termed as either core form or shell form (or alternatively, core type or shell type), as in a) or b), respectively (see images).[109][110][111][112] The Ganz factory had also in the autumn of 1884 made delivery of the world's first five high-efficiency AC transformers, the first of these units having been shipped on September 16, 1884.[113] This first unit had been manufactured to the following specifications: 1,400 W, 40 Hz, 120:72 V, 11.6:19.4 A, ratio 1.67:1, one-phase, shell form.[113] In both designs, the magnetic flux linking the primary and secondary windings traveled almost entirely within the confines of the iron core, with no intentional path through air (see Toroidal cores below). The new transformers were 3.4 times more efficient than the open-core bipolar devices of Gaulard and Gibbs.[114]
The ZBD patents included two other major interrelated innovations: one concerning the use of parallel connected, instead of series connected, utilization loads, the other concerning the ability to have high turns ratio transformers such that the supply network voltage could be much higher (initially 1,400 to 2,000 V) than the voltage of utilization loads (100 V initially preferred).[115][116] When employed in parallel connected electric distribution systems, closed-core transformers finally made it technically and economically feasible to provide electric power for lighting in homes, businesses and public spaces.[117][118] Bláthy had suggested the use of closed cores, Zipernowsky had suggested the use of parallel shunt connections, and Déri had performed the experiments;[119] The other essential milestone was the introduction of 'voltage source, voltage intensive' (VSVI) systems'[120] by the invention of constant voltage generators in 1885.[121] Ottó Bláthy also invented the first AC electricity meter.[122][123][124][125] Transformers today are designed on the principles discovered by the three engineers. They also popularized the word 'transformer' to describe a device for altering the emf of an electric current,[117][126] although the term had already been in use by 1882.[127][128] In 1886, the ZBD engineers designed, and the Ganz factory supplied electrical equipment for, the world's first power station that used AC generators to power a parallel connected common electrical network, the steam-powered Rome-Cerchi power plant.[129] The reliability of the AC technology received impetus after the Ganz Works electrified a large European metropolis: Rome in 1886.[129]
Turbines and Turbogenerators
The first turbo-generators were water turbines which propelled electric generators. The first Hungarian water turbine was designed by the engineers of the Ganz Works in 1866, the mass production with dynamo generators started in 1883.[130] The manufacturing of steam turbo generators started in the Ganz Works in 1903.
In 1905, the Láng Machine Factory company also started the production of steam turbines for alternators.[131]
Light bulbs, radio tubes and X-ray
Tungsram is a Hungarian manufacturer of light bulbs and vacuum tubes since 1896.
On 13 December 1904, Hungarian Sándor Just and Croatian Franjo Hanaman were granted a Hungarian patent (No. 34541) for the world's first tungsten filament lamp. The tungsten filament lasted longer and gave brighter light than the traditional carbon filament. Tungsten filament lamps were first marketed by the Hungarian company Tungsram in 1904. This type is often called Tungsram-bulbs in many European countries.[132] Their experiments also showed that the luminosity of bulbs filled with an inert gas was higher than in vacuum. The tungsten filament outlasted all other types (especially the former carbon filaments). The British Tungsram Radio Works was a subsidiary of the Hungarian Tungsram in pre-WW2 days.
Despite the long experimentation with vacuum tubes at Tungsram company, the mass production of radio tubes begun during WW1,[133] and the production of X-ray tubes started also during the WW1 in Tungsram Company.[134]
signal generators, oscilloscopes and pulse generators
The signal generators, oscilloscopes and pulse generators manufactured by Orion's instrumentation class have done a good job for the domestic industry as well as for export.
Home appliances
The Orion Electronics was founded in 1913. Its main profiles were the production of electrical switches, sockets, wires, incandescent lamps, electric fans, electric kettles, and various household electronics.
Industrial Refrigerators
In 1894, Hungarian inventor and industrialist István Röck started to manufacture an industrial ammonia refrigerator which was powered by electric compressors (together with the Esslingen Machine Works). At the 1896 Millennium Exhibition, Röck and the Esslingen Machine Works presented a 6-tonne capacity artificial ice producing plant. Until nationalisation after the Second World War, large-scale refrigerator production in Hungary was in the hands of Röck and Ganz Works. In 1906, the first Hungarian cold store (with a capacity of 3,000 tonnes, the largest in Europe) opened in Tóth Kálmán Street, Budapest.[135]
The first telegraph station on Hungarian territory was opened in December 1847 in Pressburg/ Pozsony /Bratislava/. In 1848, – during the Hungarian Revolution – another telegraph centre was built in Buda to connect the most important governmental centres. The first telegraph connection between Vienna and Pest – Buda (later Budapest) was constructed in 1850.[136] In 1884, 2,406 telegraph post offices operated in the Kingdom of Hungary.[137] By 1914 the number of telegraph offices reached 3,000 in post offices, and a further 2,400 were installed in the railway stations of the Kingdom of Hungary.[138]
The first Hungarian telephone exchange was opened in Budapest (May 1, 1881).[139] All telephone exchanges of the cities and towns in the Kingdom of Hungary were linked in 1893.[136]
By 1914, more than 2,000 settlements had telephone exchange in the Kingdom of Hungary.[138]
The Telefon Hírmondó (Telephone Herald) service was established in 1893. Two decades before the introduction of radio broadcasting, residents of Budapest could listen to news, cabaret, music and opera at home and in public spaces daily. It operated over a special type of telephone exchange system and its own separate network. The technology was later licensed in Italy and the United States. (see: telephone newspaper).
The first Hungarian telephone factory (Factory for Telephone Apparatuses) was founded by János Neuhold in Budapest in 1879, which produced telephones microphones, telegraphs, and telephone exchanges.[140][141][142]
In 1884, the Tungsram company also started to produce microphones, telephone apparatuses, telephone switchboards and cables.[143]
The Ericsson company also established a factory for telephones and switchboards in Budapest in 1911.[144]
Navigation and shipbuilding
Ganz–Danubius ships and submarines
The back of U-29submarine during assembly (24 April 1916)
The first Hungarian steamship was built by Antal Bernhard in 1817, called S.S. Carolina. It was also the first steamship in Habsburg-ruled states.[145] The daily passenger traffic between the two sides of the Danube by the Carolina started in 1820.[146] The regular cargo and passenger transports between Pest and Vienna began in 1831.[145] However, it was Count István Széchenyi (with the help of Austrian ship's company Erste Donaudampfschiffahrtsgesellschaft (DDSG) ), who established the Óbuda Shipyard on the Hungarian Hajógyári Island in 1835, which was the first industrial scale steamship building company in the Habsburg Empire.[147] The most important seaport for the Hungarian part of the k.u.k. was Fiume (Rijeka, today part of Croatia), where the Hungarian shipping companies, such as the Adria, operated. The largest Hungarian shipbuilding company was the Ganz-Danubius. In 1911, The Ganz Company merged with the Danubius shipbuilding company, which largest shipbuilding company in Hungary. Since 1911, the unified company adopted the "Ganz – Danubius" brand name.
As Ganz Danubius, the company became involved in shipbuilding before, and during, World War I. Ganz was responsible for building the dreadnought Szent István, supplied the machinery for the cruiser Novara.
In 1915, the Whitehead company established one of its largest enterprise, the Hungarian Submarine Building Corporation (or in its German name: Ungarische Unterseebotsbau AG (UBAG)), in Fiume, Kingdom of Hungary (Now Rijeka, Croatia).[150][151]SM U-XX, SM U-XXI, SM U-XXII and SM U-XXIII Type diesel-electric submarines were produced by the UBAG Corporation in Fiume.[152][153]
^"Leo Szilard". Encyclopedia Brittanica. 10 April 2024. Retrieved 25 April 2024.
^Payne, David (8 March 2017). "Investing in science in Hungary : Naturejobs Blog". blogs.Nature.com. Archived from the original on 21 March 2019. Retrieved 23 December 2017. Hungary ranks 35th in the world for quality research output, according to Nature Index's 2015–2016 data
^Dániel Rátai participated with his invention at the finals of the Intel – International Science and Engineering Fair world competition in 2005 in Phoenix, Arizona. Rátai's invention garnered six first prizes from the jury composed of international experts:
IEEE Computer Society, First Award;
Patent and Trademark Office Society, First Award;
Intel Foundation Achievement Awards;
Computer Science – Presented by Intel Foundation, Best of Category;
Computer Science – Presented by Intel Foundation, First Award;
Seaborg SIYSS Award.
"Big corporations and research institutions have spent billions of dollars over decades to solve this problem. Meanwhile, this 19-year-old kid has cobbled this gizmo together using straws, Christmas tree lights and wire," one American juror's commented."
^Wolfschmidt, Gudrun (ed.): Cultural Heritage of Astronomical Observatories – From Classical Astronomy to Modern Astrophysics Proceedings of the International ICOMOS Symposium in Hamburg, 14–17 October 2008. ICOMOS – International Council on Monuments and Sites. Berlin: hendrik Bäßler-Verlag (Monuments and Sites XVIII) 2009. pp 155–157
^Astron. Nachr. /AN 328 (2007), No. 7 – Short Contributions AG2007 Würzburg 1 A Pioneer of the Theory of Stellar Spectra – Radó von Kövesligethy Lajos Balázs, Magda Vargha and E. Zsoldos Konkoly Observatory of the Hungarian Academy of Sciences P.O.Box 67, H-1525 Budapest: The first successful spectral equation of black body radiation was the theory of continuous spectra of celestial bodies by Radó von Kövesligethy (published 1885 in Hungarian, 1890 in German).
Kövesligethy made several assumptions on the matter-radiation interaction. Based on these assumptions, he derived a spectral equation with the following properties: the spectral distribution of radiation depends only on the temperature, the total irradiated energy is finite (15 years before Planck!), the wavelength of the intensity maximum is inversely proportional to the temperature (eight years before Wien!). Using his spectral equation, he estimated the temperature of several celestial bodies, including the Sun. As a byproduct he developed a theory of the spectroscopic instruments
^Miskolczi, F.M. (2007) Greenhouse effect in semi-transparent planetary atmospheres, Quarterly Journal of the Hungarian Meteorological Service
Vol. 111, No. 1, January–March 2007, pp. 1–40
^(Béla Czére, Ákos Vaszkó): Nagyvasúti Vontatójármüvek Magyarországon, Közlekedési Můzeum, Közlekedési Dokumentációs Vállalat, Budapest, 1985, ISBN9635521618
^Wolfgang Lübsen: Die Orientbahn und ihre Lokomotiven. in: Lok-Magazin 57, December 1972, S. 448–452
^István Tisza and László Kovács: A magyar állami, magán- és helyiérdekű vasúttársaságok fejlődése 1876–1900 között, Magyar Vasúttörténet 2. kötet. Budapest: Közlekedési Dokumentációs Kft., 58–59, 83–84. o. ISBN9635523130 (1996)(English: The development of Hungarian private and state owned commuter railway companies between 1876 and 1900, Hungarian railway History Volume II.
^History of Public Transport in Hungary. Book: Zsuzsa Frisnyák: A magyarországi közlekedés krónikája, 1750–2000
^Tramways in Croatia: Book: Vlado Puljiz, Gojko Bežovan, Teo Matković, dr. Zoran Šućur, Siniša Zrinščak: Socijalna politika Hrvatske
^Iván Boldizsár: NHQ; the New Hungarian Quarterly – Volume 16, Issue 2; Volume 16, Issues 59–60 – Page 128
^Hungarian Technical Abstracts: Magyar Műszaki Lapszemle – Volumes 10–13 – Page 41
^Joseph H. Wherry: Automobiles of the World: The Story of the Development of the Automobile, with Many Rare Illustrations from a Score of Nations (Page:443)
^ abHalacsy, A. A.; Von Fuchs, G. H. (April 1961). "Transformer Invented 75 Years Ago". IEEE Transactions of the American Institute of Electrical Engineers. 80 (3): 121–125. doi:10.1109/AIEEPAS.1961.4500994. S2CID51632693.
^"Bláthy, Ottó Titusz". Budapest University of Technology and Economics, National Technical Information Centre and Library. Retrieved 29 February 2012.
^American Society for Engineering Education. Conference – 1995: Annual Conference Proceedings, Volume 2, (PAGE: 1848)
^Thomas Parke Hughes: Networks of Power: Electrification in Western Society, 1880–1930 (PAGE: 96)
^Eugenii Katz. "Blathy". People.clarkson.edu. Archived from the original on 25 June 2008. Retrieved 4 August 2009.
^Ricks, G.W.D. (March 1896). "Electricity Supply Meters". Journal of the Institution of Electrical Engineers. 25 (120): 57–77. doi:10.1049/jiee-1.1896.0005. Student paper read on January 24, 1896 at the Students' Meeting.
^United States. Congress (1910). Congressional Serial Set. U.S. Government Printing Office. pp. 41, 53.
^"Rövid történet" [A Short History] (PDF) (in English and Hungarian). 4 August 1998. Archived from the original(PDF) on 30 May 2005. Retrieved 15 June 2023.