These modifiers have been shown to improve asthma symptoms, reduce asthma exacerbations and limit markers of inflammation such as eosinophil counts in the peripheral blood and bronchoalveolar lavage fluid. This demonstrates that they have anti-inflammatory properties.
^ abcScott JP, Peters-Golden M (September 2013). "Antileukotriene agents for the treatment of lung disease". Am. J. Respir. Crit. Care Med. 188 (5): 538–544. doi:10.1164/rccm.201301-0023PP. PMID23822826.
^Al-Ahmad, Mona; Hassab, Mohammed; Al Ansari, Ali (2020-12-21). "Allergic and Non-allergic Rhinitis". Textbook of Clinical Otolaryngology. Cham: Springer International Publishing. pp. 241–252. doi:10.1007/978-3-030-54088-3_22. ISBN978-3-030-54087-6. S2CID234142758. Antileukotrienes such as montelukast may be used in patients with asthma associated with allergic rhinitis.
^ abc"Zyflo (Zileuton tablets)"(PDF). United States Food and Drug Administration. Cornerstone Therapeutics Inc. June 2012. p. 1. Retrieved 12 December 2014. Zileuton is a specific inhibitor of 5-lipoxygenase and thus inhibits leukotriene (LTB4, LTC4, LTD4, and LTE4) formation. Both the R(+) and S(-) enantiomers are pharmacologically active as 5-lipoxygenase inhibitors in in vitro systems. Leukotrienes are substances that induce numerous biological effects including augmentation of neutrophil and eosinophil migration, neutrophil and monocyte aggregation, leukocyte adhesion, increased capillary permeability, and smooth muscle contraction. These effects contribute to inflammation, edema, mucus secretion, and bronchoconstriction in the airways of asthmatic patients. Sulfido-peptide leukotrienes (LTC4, LTD4, LTE4, also known as the slow-releasing substances of anaphylaxis) and LTB4, a chemoattractant for neutrophils and eosinophils, can be measured in a number of biological fluids including bronchoalveolar lavage fluid (BALF) from asthmatic patients.
^ abcd"Enzymes". Hyperforin (HMDB0030463). Human Metabolome Database. 3.6. University of Alberta. 30 June 2013. Retrieved 12 December 2014.
^ abcde Melo MS, Quintans Jde S, Araújo AA, Duarte MC, Bonjardim LR, Nogueira PC, Moraes VR, de Araújo-Júnior JX, Ribeiro EA, Quintans-Júnior LJ (2014). "A systematic review for anti-inflammatory property of Clusiaceae family: a preclinical approach". Evid Based Complement Alternat Med. 2014: 960258. doi:10.1155/2014/960258. PMC4058220. PMID24976853. These researches are according to an investigation of the effect of H. perforatum on the NF-κB inflammation factor, conducted by Bork et al. (1999), in which hyperforin provided a potent inhibition of TNFα-induced activation of NF-κB [58]. Another important activity for hyperforin is a dual inhibitor of cyclooxygenase-1 and 5-lipoxygenase [59]. Moreover, this species attenuated the expression of iNOS in periodontal tissue, which may contribute to the attenuation of the formation of nitrotyrosine, an indication of nitrosative stress [26]. In this context, a combination of several active constituents of Hypericum species is the carrier of their anti-inflammatory activity.
^ abcWölfle U, Seelinger G, Schempp CM (February 2014). "Topical application of St. John's wort (Hypericum perforatum)". Planta Med. 80 (2–3): 109–20. doi:10.1055/s-0033-1351019. PMID24214835. Anti-inflammatory mechanisms of hyperforin have been described as inhibition of cyclooxygenase-1 (but not COX-2) and 5-lipoxygenase at low concentrations of 0.3 μmol/L and 1.2 μmol/L, respectively [52], and of PGE2 production in vitro [53] and in vivo with superior efficiency (ED50 = 1 mg/kg) compared to indomethacin (5 mg/kg) [54]. Hyperforin turned out to be a novel type of 5-lipoxygenase inhibitor with high effectivity in vivo [55] and suppressed oxidative bursts in polymorphonuclear cells at 1.8 μmol/L in vitro [56]. Inhibition of IFN-γ production, strong downregulation of CXCR3 expression on activated T cells, and downregulation of matrix metalloproteinase 9 expression caused Cabrelle et al. [57] to test the effectivity of hyperforin in a rat model of experimental allergic encephalomyelitis (EAE). Hyperforin attenuated the symptoms significantly, and the authors discussed hyperforin as a putative therapeutic molecule for the treatment of autoimmune inflammatory diseases sustained by Th1 cells.
^Jawien, J.; Gajda, M.; Rudling, M.; Mateuszuk, L.; Olszanecki, R.; Guzik, T. J.; Cichocki, T.; Chlopicki, S.; Korbut, R. (March 2006). "Inhibition of five lipoxygenase activating protein (FLAP) by MK-886 decreases atherosclerosis in apoE/LDLR-double knockout mice". European Journal of Clinical Investigation. 36 (3): 141–146. doi:10.1111/j.1365-2362.2006.01606.x. PMID16506957. S2CID44897529.