Group of pharmaceuticals that modulate the renin–angiotensin system
"Sartan" redirects here. For the village in Iran, see Sartan, Iran.
Angiotensin II receptor blockers (ARBs), formally angiotensin II receptor type 1 (AT1) antagonists,[1] also known as angiotensin receptor blockers,[2][3]angiotensin II receptor antagonists, or AT1 receptor antagonists, are a group of pharmaceuticals that bind to and inhibit the angiotensin II receptor type 1 (AT1) and thereby block the arteriolar contraction and sodium retention effects of renin–angiotensin system.[4]
ARBs and the similar-attributed ACE inhibitors are both indicated as the first-line antihypertensives in patients developing hypertension along with left-sidedheart failure.[5] However, ARBs appear to produce less adverse effects compared to ACE inhibitors.[5]
Medical uses
Angiotensin II receptor blockers are used primarily for the treatment of hypertension where the patient is intolerant of ACE inhibitor therapy primarily because of persistent and/or dry cough.[6] They do not inhibit the breakdown of bradykinin or other kinins, and are thus only rarely associated with the persistent dry cough and/or angioedema that limit ACE inhibitor therapy.[citation needed] More recently, they have been used for the treatment of heart failure in patients intolerant of ACE inhibitor therapy, in particular candesartan. Irbesartan and losartan have trial data showing benefit in hypertensive patients with type 2 diabetes,[citation needed] and may delay the progression of diabetic nephropathy.[citation needed] A 1998 double-blind study found "that lisinopril improved insulin sensitivity whereas losartan did not affect it."[7]Candesartan is used experimentally in preventive treatment of migraine.[8][9] Lisinopril has been found less often effective than candesartan at preventing migraine.[10]
The angiotensin II receptor blockers have differing potencies in relation to blood pressure control, with statistically differing effects at the maximal doses.[11] When used in clinical practice, the particular agent used may vary based on the degree of response required.
Angiotensin II, through AT1 receptor stimulation, is a major stress hormone and, because (ARBs) block these receptors, in addition to their eliciting anti-hypertensive effects, may be considered for the treatment of stress-related disorders.[14]
In 2008, they were reported to have a remarkable negative association with Alzheimer's disease (AD). A retrospective analysis of five million patient records with the US Department of Veterans Affairs system found different types of commonly used antihypertensive medications had very different AD outcomes. Those patients taking angiotensin receptor blockers (ARBs) were 35 to 40% less likely to develop AD than those using other antihypertensives.[15][16]
A retrospective study of 1968 stroke patients revealed that prestroke treatment with ARB may be associated with both reduced stroke severity and better outcome. This finding agrees with experimental data that suggest that ARB's exert a cerebral protective effect.[17]
Adverse effects
This class of drugs is usually well tolerated. Common adverse drug reactions (ADRs) include: dizziness, headache, and/or hyperkalemia. Infrequent ADRs associated with therapy include: first dose orthostatic hypotension, rash, diarrhea, dyspepsia, abnormal liver function, muscle cramp, myalgia, back pain, insomnia, decreased hemoglobin levels, renal impairment, pharyngitis, and/or nasal congestion.[18] A 2014 Cochrane systematic review based on randomized controlled trials reported that when comparing patients taking ACE inhibitors to patients taking ARBs, fewer ARB patients withdrew from the study due to adverse events compared to ACE inhibitor patients.[19]
While one of the main rationales for the use of this class is the avoidance of a persistent dry cough and/or angioedema associated with ACE inhibitor therapy, rarely they may still occur. In addition, there is also a small risk of cross-reactivity in patients having experienced angioedema with ACE inhibitor therapy.[18]
Myocardial infarction
The issue of whether angiotensin II receptor antagonists slightly increase the risk of myocardial infarction (MI or heart attack) is currently being investigated. Some studies suggest ARBs can increase the risk of MI.[20] However, other studies have found ARBs do not increase the risk of MI.[21] To date, with no consensus on whether ARBs have a tendency to increase the risk of myocardial infarction, further investigations are underway.[needs update]
Indeed, as a consequence of AT1 blockade, ARBs increase angiotensin II levels several-fold above baseline by uncoupling a negative-feedback loop. Increased levels of circulating angiotensin II result in unopposed stimulation of the AT2 receptors, which are, in addition, upregulated. However, recent data suggest AT2 receptor stimulation may be less beneficial than previously proposed, and may even be harmful under certain circumstances through mediation of growth promotion, fibrosis, and hypertrophy, as well as eliciting proatherogenic and proinflammatory effects.[22][23][24]
Cancer
A study published in 2010 determined that "...meta-analysis of randomised controlled trials suggests that ARBs are associated with a modestly increased risk of new cancer diagnosis. Given the limited data, it is not possible to draw conclusions about the exact risk of cancer associated with each particular drug. These findings warrant further investigation."[25] A later meta-analysis by the U.S. Food and Drug Administration (FDA) of 31 randomized controlled trials comparing ARBs to other treatment found no evidence of an increased risk of incident (new) cancer, cancer-related death, breast cancer, lung cancer, or prostate cancer in patients receiving ARBs.[26] In 2013, comparative effectiveness research from the United States Department of Veterans Affairs on the experience of more than a million veterans found no increased risks for either lung cancer[27] or prostate cancer.[28] The researchers concluded: "In this large nationwide cohort of United States Veterans, we found no evidence to support any concern of increased risk of lung cancer among new users of ARBs compared with nonusers. Our findings were consistent with a protective effect of ARBs."[27]
In May 2013, a senior regulator at the Food & Drug Administration, Medical Team Leader Thomas A. Marciniak, revealed publicly that contrary to the FDA's official conclusion that there was no increased cancer risk, after a patient-by-patient examination of the available FDA data he had concluded that there was a lung-cancer risk increase of about 24% in ARB patients, compared with patients taking a placebo or other drugs. One of the criticisms Marciniak made was that the earlier FDA meta-analysis did not count lung carcinomas as cancers. In ten of the eleven studies he examined, Marciniak said that there were more lung cancer cases in the ARB group than the control group. Ellis Unger, chief of the drug-evaluation division that includes Marciniak, was quoted as calling the complaints a "diversion," and saying in an interview, "We have no reason to tell the public anything new." In an article about the dispute, the Wall Street Journal interviewed three other doctors to get their views; one had "no doubt" ARBs increased cancer risk, one was concerned and wanted to see more data, and the third thought there was either no relationship or a hard to detect, low-frequency relationship.[29]
A 2016 meta-analysis including 148,334 patients found no significant differences in cancer incidence associated with ARB use.[30]
These substances are AT1-receptor antagonists; that is, they block the activation of angiotensin II AT1 receptors. AT1 receptors are found in smooth muscle cells of vessels, cortical cells of the adrenal gland, and adrenergic nerve synapses. Blockage of AT1 receptors directly causes vasodilation, reduces secretion of vasopressin, and reduces production and secretion of aldosterone, among other actions. The combined effect reduces blood pressure.[citation needed]
The specific efficacy of each ARB within this class depends upon a combination of three pharmacodynamic (PD) and pharmacokinetic (PK) parameters. Efficacy requires three key PD/PK areas at an effective level; the parameters of the three characteristics will need to be compiled into a table similar to one below, eliminating duplications and arriving at consensus values; the latter are at variance now.[citation needed]
Pressor inhibition
Pressor inhibition at trough level — this relates to the degree of blockade or inhibition of the blood pressure-raising ("pressor") effect of angiotensin II. However, pressor inhibition is not a measure of blood pressure-lowering (BP) efficacy per se. The rates as listed in the U.S. Food and Drug Administration (FDA) Package Inserts (PIs) for inhibition of this effect at the 24th hour for the ARBs are as follows:
The ratios of AT1 to AT2 in binding affinities of the specific ARBs are shown as follows. However, AT1 affinity vs AT2 is not a meaningful indicator of blood pressure response.[38]
Knockout of the Agtr1a gene that encodes AT1 results in marked prolongation of the life-span of mice, by 26% compared to controls. The likely mechanism is reduction of oxidative damage (especially to mitochondria) and overexpression of renal prosurvival genes. The ARBs seem to have the same effect.[58][59]
Fibrosis regression
ARBs, such as losartan, have been shown to curb or reduce muscular,[60] liver,[61] cardiac,[62] and kidney[63] fibrosis.
Dilated aortic root regression
A 2003 study using candesartan and valsartan demonstrated an ability to regress dilated aortic root size.[64]
In June 2018, the US Food and Drug Administration (FDA) found traces of NDMA and NDEA impurities in the angiotensin II receptor blocker (ARB) drug products valsartan, losartan, and irbesartan.[65][66][67][68][69] The FDA stated "In June 2018, FDA was informed of the presence of an impurity, identified as N-Nitrosodimethylamine (NDMA), from one[70]API producer. Since then, FDA has determined that other types of nitrosamine compounds, e.g., N-Nitrosodiethylamine (NDEA), are present at unacceptable levels in APIs from multiple API producers of valsartan and other drugs in the ARB class."[71] In 2018, the FDA issued guidance to the industry on how to assess and control the impurities.[72]
In August 2020, the European Medicines Agency (EMA) provided guidance to marketing authorization holders on how to avoid the presence of nitrosamine impurities in human medicines and asked them to review all chemical and biological human medicines for the possible presence of nitrosamines and to test the products at risk.[73]
In November 2020, the Committee for Medicinal Products for Human Use (CHMP) of the EMA aligned recommendations for limiting nitrosamine impurities in sartan medicines with recommendations it issued for other classes of medicines.[74] The main change concerns the limits for nitrosamines, which previously applied to the active ingredients but now apply instead to the finished products (e.g. tablets).[74] These limits, based on internationally agreed standards (ICH M7(R1)), should ensure that the excess risk of cancer from nitrosamines in any sartan medicines is below 1 in 100,000 for a person taking the medicine for lifelong treatment.[74]
These sartan medicines have a specific ring structure (tetrazole) whose synthesis could potentially lead to the formation of nitrosamine impurities.[74][75] Other sartan medicines which do not have this ring, such as azilsartan, eprosartan and telmisartan, were not included in this review but are covered by the subsequent review of other medicines.[74]
The FDA issued revised guidelines about nitrosamine impurities in September 2024.[76]
Azides
Losartan azide (left) and AZBT (right), two azido process impurities detected in sartans. Losartan azide occurs exclusively during manufacture of losartan, while AZBT can be found in several drugs in the class.
In April 2021, the European Directorate for the Quality of Medicines (EDQM) warned of the risk of contamination with non-nitrosamine impurities (specifically, azido compounds) in tetrazole-containing sartans.[77] In September 2021, the EDQM announced that investigations had revealed a novel azido contaminant which occurs only in losartan (losartan azide or losartan azido impurity) and which was found to be mutagenic on Ames testing.[78]
Later in 2021 and 2022, several cases of contamination with azido impurities were detected in losartan, irbesartan, and valsartan, prompting regulatory responses ranging from investigation to market withdrawals and precautionary recalls in Australia,[79]Brazil,[80] and Europe (including Switzerland).[81][82]
Teva Pharmaceuticals announced that it would change its losartan manufacturing process to prevent future contamination with these impurities,[81] and the Indian API manufacturer IOL Chemicals and Pharmaceuticals applied for a patent on a new synthesis of losartan designed to be free of azido contaminants.[83]
References
^Mirabito Colafella, Katrina M.; Uijl, Estrellita; Jan Danser, A.H. (2019). "Interference With the Renin–Angiotensin System (RAS): Classical Inhibitors and Novel Approaches". Encyclopedia of Endocrine Diseases. Elsevier. pp. 523–530. doi:10.1016/b978-0-12-801238-3.65341-2. ISBN978-0-12-812200-6. S2CID86384280.
^ ab"ARBs", Angiotensin II Receptor Antagonists, Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases, 2012, PMID31643954, retrieved 2020-03-21, The angiotensin II receptor antagonists, also known as angiotensin receptor blockers (ARBs), are a family of agents that bind to and inhibit the angiotensin II type 1 receptor (AT1) and thus inhibit the renin-angiotensin system and its cascade of effects in causing arteriolar contraction and sodium retention. While angiotensin converting enzyme (ACE) inhibitors block the cleavage of angiotensin I to angiotensin II, the active peptide that causes a pressor response, the ARBs inhibit its peripheral action.
^Tronvik E, Stovner LJ, Helde G, Sand T, Bovim G (January 2003). "Prophylactic treatment of migraine with an angiotensin II receptor blocker: a randomized controlled trial". JAMA. 289 (1): 65–9. doi:10.1001/jama.289.1.65. PMID12503978. S2CID35939042.
^Gales BJ, Bailey EK, Reed AN, Gales MA (February 2010). "Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers for the prevention of migraines". The Annals of Pharmacotherapy. 44 (2): 360–6. doi:10.1345/aph.1M312. PMID20086184. S2CID207263658.
^Dang A, Zhang Y, Liu G, Chen G, Song W, Wang B (January 2006). "Effects of losartan and irbesartan on serum uric acid in hypertensive patients with hyperuricaemia in Chinese population". Journal of Human Hypertension. 20 (1): 45–50. doi:10.1038/sj.jhh.1001941. PMID16281062. S2CID25534200.
^
Daskalopoulou SS, Tzovaras V, Mikhailidis DP, Elisaf M (2005). "Effect on serum uric acid levels of drugs prescribed for indications other than treating hyperuricaemia". Current Pharmaceutical Design. 11 (32): 4161–75. doi:10.2174/138161205774913309. PMID16375738.
^Fuentes, Blanca (2010). "Treatment with angiotensin receptor blockers before stroke could exert a favourable effect in acute cerebral infarction". Journal of Hypertension. 28 (3): 575–581. doi:10.1097/HJH.0b013e3283350f50. PMID20090554. S2CID28972688.
^Reudelhuber TL (December 2005). "The continuing saga of the AT2 receptor: a case of the good, the bad, and the innocuous". Hypertension. 46 (6): 1261–2. doi:10.1161/01.HYP.0000193498.07087.83. PMID16286568.
^ abTucker, Bryan M.; Perazella, Mark A. (2019). "Medications: 3. What are the major adverse effects on the kidney of ACE inhibitors and ARBs?". Nephrology Secrets. Elsevier. pp. 78–83. doi:10.1016/b978-0-323-47871-7.00019-8. ISBN978-0-323-47871-7. S2CID239423283. due to inhibition of angiotensin II production by ACE inhibitors or competitive antagonism of the angiotensin II receptor by ARBs... results in loss of angiotensin II–induced efferent arteriolar tone, leading to a drop in glomerular filtration fraction and GFR. The efferent arteriolal vasodilation reduces intraglomerular hypertension (and pressure-related injury) and maintains perfusion (and oxygenation) of the peritubular capillaries.
^Toto RD, Mitchell HC, Lee HC, Milam C, Pettinger WA (October 1991). "Reversible renal insufficiency due to angiotensin converting enzyme inhibitors in hypertensive nephrosclerosis". Annals of Internal Medicine. 115 (7): 513–9. doi:10.7326/0003-4819-115-7-513. PMID1883120.
^Bakris GL, Weir MR (March 2000). "Angiotensin-converting enzyme inhibitor-associated elevations in serum creatinine: is this a cause for concern?". Archives of Internal Medicine. 160 (5): 685–93. doi:10.1001/archinte.160.5.685. PMID10724055.
^Sarafidis PA, Khosla N, Bakris GL (January 2007). "Antihypertensive therapy in the presence of proteinuria". American Journal of Kidney Diseases. 49 (1): 12–26. doi:10.1053/j.ajkd.2006.10.014. PMID17185142. S2CID18337587.
^Kjeldsen, Sverre E; Brunner, Hans R; McInnes, Gordon T; Stolt, Pelle (2005). "Valsartan in the treatment of hypertension". Aging Health. 1 (1). Future Medicine Ltd: 27–36. doi:10.2217/1745509x.1.1.27.
^"Saprisartan". drugbank.ca. Archived from the original on 28 September 2016. Retrieved 1 May 2018.
^ abcd"LOSARTAN- losartan potassium tablet, film coated". DailyMed. 2018-12-26. Retrieved 2019-02-06. 12.3 Pharmacokinetics/ Absorption: Following oral administration, the systemic bioavailability of losartan is approximately 33%. Mean peak concentrations of losartan and its active metabolite are reached in 1 hour and in 3 to 4 hours, respectively. While maximum plasma concentrations of losartan and its active metabolite are approximately equal, the AUC (area under the curve) of the metabolite is about 4 times as great as that of losartan. A meal slows absorption of losartan and decreases its Cmax but has only minor effects on losartan AUC or on the AUC of the metabolite (≈10% decrease). The pharmacokinetics of losartan and its active metabolite are linear with oral losartan doses up to 200 mg and do not change over time.
^Fischer, Tracy L.; Pieper, John A.; Graff, Donald W.; Rodgers, Jo E.; Fischer, Jeffrey D.; Parnell, Kimberly J.; Goldstein, Joyce A.; Greenwood, Robert; Patterson, J. Herbert (September 2002). "Evaluation of potential losartan-phenytoin drug interactions in healthy volunteers". Clinical Pharmacology and Therapeutics. 72 (3): 238–246. doi:10.1067/mcp.2002.127945. ISSN0009-9236. PMID12235444. S2CID28606328.
^Gu, N., Kim, B., Kyoung, S.L., Kim, S.E., Nam, W.S., Yoon, S.H., Cho, J., Shin, S., Jang, I., Yu, K. The Effect of Fimasartan, an Angiotensin Receptor Type 1 Blocker, on the Pharmacokinetics and Pharmacodynamics of Warfarin in Healthy Korean Male Volunteers: A One- Sequence, Two-Period Crossover Clinical Trial. (2012). Clinical Therapeutics. 34(7): 1592–1600.
^Chi, Yong Ha; Lee, Howard; Paik, Soo Heui; Lee, Joo Han; Yoo, Byoung Wook; Kim, Ji Han; Tan, Hyun Kwang; Kim, Sang Lin (2011-10-01). "Safety, tolerability, pharmacokinetics, and pharmacodynamics of fimasartan following single and repeated oral administration in the fasted and fed states in healthy subjects". American Journal of Cardiovascular Drugs: Drugs, Devices, and Other Interventions. 11 (5): 335–346. doi:10.2165/11593840-000000000-00000. ISSN1179-187X. PMID21910510. S2CID207300735.
^Analogue-based Drug Discovery (Optimizing Antihypertensive Therapy by Angiotensin Receptor Blockers; Farsang, C., Fisher, J., p.157–167) Editors; Fischer, J., Ganellin, R. Wiley-VCH 2006. ISBN978-3-527-31257-3
^Brousil, J. A.; Burke, J. M. (2003), "Olmesartan Medoxomil: An Angiotensin II-Receptor Blocker", Clinical Therapeutics, 25 (4): 1041–1055, doi:10.1016/S0149-2918(03)80066-8, PMID12809956
^Zusman, R. M.; Jullien, V.; Lemetayer, P.; Jarnier, P.; Clementy, J. (1999), "Are There Differences Among Angiotensin Receptor Blockers?", American Journal of Hypertension, 12 (2 Pt 1): 231–235, doi:10.1016/S0895-7061(99)00116-8, PMID10090354
^"Nitrosamine impurities". European Medicines Agency. 23 October 2019. Retrieved 6 August 2020. Text was copied from this source which is copyright European Medicines Agency. Reproduction is authorized provided the source is acknowledged.