Jednoduché geometrické útvary byly známy již v paleolitu a podrobněji zkoumány ve všech antických civilizacích. Na vědecké úrovni se jim poprvé věnovali staří Řekové jako Eukleidés a další. V raném novověku René Descartes vynalezl souřadnice, což umožnilo vznik analytické geometrie a zkoumání útvarů algebraickými prostředky. 19. století postavilo matematiku na nové formální základy, z hlediska geometrie byl významný například vznik neeukleidovské geometrie a teorie množin.
Geometrické útvary patří vedle čísel k nejstarším zkoumaným předmětům matematiky, jednoduchou představu o některých z nich měli lidé zřejmě již v paleolitu, starší době kamenné.[5] V neolitu se pak různé útvary staly základem geometrické ornamentiky na více místech světa.[6] Další rozvoj přišel s nástupem prvních států v Mezopotámii a Egyptě, kde se poznatky o útvarech využívaly v zeměměřičství a stavebnictví; Babylóňané již znali zvláštní případy Pythagorovy věty a egyptští geometři uměli počítat obsah trojúhelníka i kruhu, přičemž jejich odhad čísla pí byl asi 3,1605.[6] K řadě poznatků se dospělo také ve starověké Indii a Číně.[7]
Na vědeckou úroveň povznesli matematiku staří Řekové, především Eukleidés, autor první axiomatické teorie. Geometrických útvarů se týká řada jejich poznatků a úvah. Jmenovat lze například platónská tělesa (Platón je popsal a uvažoval o jejich hlubším smyslu, zatímco Eukleidés dokázal, že žádná další takto pravidelná tělesa již neexistují), Zénónovy paradoxy o nekonečném dělení úsečky nebo Archimédovy myšlenky o výpočtu objemu těles, předjímající pozdější integrální počet.[8] Útvarů se týkají také tři slavné problémy, které starověká matematika zanechala nevyřešené: trisekce úhlu, zdvojení krychle a kvadratura kruhu.[9]
Jako prostor, v němž geometrie pracovala, se po dvě tisíciletí bral výhradně prostor popsaný Euklidem v jeho Základech, jehož teorii[15] na konci 19. století axiomatizoval David Hilbert.[16] V 19. a 20. století se postupně objevily alternativy, jmenovitě neeukleidovské geometrie, umožňující vystihnout mj. geometrii zakřivených ploch,[17] a vícerozměrné prostory, vhodné např. pro popis časoprostoru.[18]
Bod je bezrozměrný dále nedělitelný element. Body se v učebnicích často značí velkými písmeny , , ,…
Přímka je abstrakce rovné čáry nulové šířky, jednorozměrný objekt, označuje se malým písmenem , , , nebo pomocí dvou různých bodů, které ji určují.
Rovina je abstrakce ploché rovné desky nulové tloušťky, značí se písmeny řecké abecedy , , , , nebo také pomocí tří různých bodů neležících na jedné přímce, které ji určují.
V hilbertovské axiomatizaci geometrie jsou bod, přímka a rovina spolu s některými vlastnostmi a vzájemnými vztahy definovány axiomaticky a další vlastnosti, útvary a tvrzení se odvozují z těchto stavebních prvků.
Analytická geometrie lineárních útvarů se zabývá útvary popsatelnými ve vhodně zvolené souřadné soustavě polynomy prvního stupně (v nichž souřadnice vystupují v první mocnině); příkladem je přímka (lze v rovině popsat rovnicí tvaru , v prostoru soustavou ) či rovina (lze v prostoru popsat rovnicí tvaru ).
Kromě základních definičních vlastností, jako jsou tvar, rozměry a poloha útvaru v prostoru, lze zkoumat i další vlastnosti geometrických útvarů. Například to jsou:
Dimenze: Útvarům lze přiřadit číslo, které se nazývá počet rozměrů čili dimenze útvaru. Pro „běžné“ útvary je dimenze celé číslo: pro bod je to nula, pro přímku a obvyklé křivky 1, pro rovinu a běžné zakřivené plochy 2, pro prostorová tělesa jako koule a hranol 3. Existuje více způsobů definice dimenze; podle toho rozlišujeme např. topologickou dimenzi nebo různé fraktální dimenze (jako jsou Hausdorffova míra či Rényiho dimenze), jež pro speciální útvary zvané fraktály mohou být i neceločíselné.[22] (Pro fraktální útvary lze určovat i další speciální vlastnosti, např. lacunaritu,[23] měřící, nakolik fraktál vyplňuje prostor.)
Symetrie čili souměrnost podle nějakého bodu, přímky či roviny, symetrie vzhledem k otočení či symetrie vůči změně měřítka (škálovací symetrie).
Útvar může být otevřený, tedy obsahovat pouze vnitřní body. To znamená, že každý bod útvaru má kolem sebe nějaké okolí, jež obsahuje pouze body tohoto útvaru. Otevřený útvar tedy neobsahuje svou hranici.
Útvar může být uzavřený, tedy obsahovat všechny své hromadné body; každá konvergentní posloupnost bodů útvaru má limitu, která rovněž patří do útvaru. Uzavřený útvar tedy obsahuje všechny své hraniční body. Útvar může být zároveň otevřený i uzavřený (to splňují prázdná množina a celý prostor) a naopak nemusí být ani otevřený, ani uzavřený (např. polootevřená úsečka). „Uzavřená křivka“ ovšem zpravidla znamená „křivka, jejíž počáteční bod se shoduje s koncovým,“ nejde tedy o uzavřenost v množinovém smyslu.
Útvar může být souvislý; to znamená, že mezi libovolnými dvěma jeho body existuje souvislá čára, která leží celá v útvaru.
Útvar může být konvexní; to znamená, že úsečka mezi libovolnými dvěma jeho body leží celá v útvaru. Z toho je patrné, že konvexní útvar musí být souvislý.
Kromě obecných logických vztahů (existence, rovnost) používá Hilbertovská axiomatizace geometrie tři různé vztahy mezi geometrickými objekty:[24]
Incidence, což znamená vlastnost „ležet na“, „ležet v“, „být prvkem“. Značí se a její negace jako . Například znamená „bod A leží na přímce p“.
Vlastnost „ležet mezi“, např. bod A leží mezi body X a Y na přímce p.
Shodnost, tedy schopnost útvarů se po vhodné transformaci zachovávající vzdálenosti ztotožnit. Týká se např. úseček (stejná délka) nebo úhlů (stejná velikost úhlu). Značí se . Například čteme „trojúhelník ABC je shodný s trojúhelníkem DEF“ a znamená to, že oba trojúhelníky mají stejné délky stran a velikosti úhlů.
Nejčastěji geometrický útvar definuje přímo jako množinabodůEuklidova prostoru,[2][3]. Podle této definice je tedy například čtverec společný název pro nekonečně mnoho různých geometrických útvarů.
Jiné zdroje popisují geometrický útvar jako to, co je charakterizováno tvarem dané množiny, který se nemění u otočení a posunutí.[25][26][27]
V Ottově slovníků naučném je geometrický útvar popsán jako matematický objekt, který zachycuje tvar, velikost a polohu tělesa, nehledíce ale k jeho hmotě.[28]
Zobecnění
Existují různá matematická zobecnění pojmu geometrický útvar. Topologie se zabývá vlastnostmi množin, které se nemění při spojitých transformacích a topologický prostor je zobecněním pojmu tvar. Vlastnosti geometrických objektů, které se nemění při difeomorfizmech studuje diferenciální topologie a vlastnosti, které se nemění při homotopiích, studuje algebraická topologie. Vlastnosti útvarů, které se zachovávají při různých transformacích, se nazývají invarianty. V algebraické topologii jsou to například díry různých dimenzí (například kruh bez bodu má díru, plný kruh nikoliv). Invarianty, které formalizují a popisují typy a počty děr, jsou homotopické grupy a homologické grupy.[29]
Literatura
KLAPKA, Jiří. Jak se studují geometrické útvary v prostoru?. Část první. Praha: Jednota československých matematiků a fysiků, 1947.
KLAPKA, Jiří. Jak se studují geometrické útvary v prostoru?. II. část. Praha: Jednota československých matematiků a fysiků, 1947.
VYŠÍN, Jan. Konvexní útvary. Praha: Mladá fronta, 1964.
JUKL, Marek. Analytická geometrie lineárních útvarů. 2. vyd. Olomouc: Univerzita Palackého v Olomouci, 2008. ISBN978-80-244-2148-3.
↑Tolle,C.R. McJunkin,T.R. Rohrbaugh,D.T. a LaViolette,R.A., Lacunarity definition for ramified data sets based on optimal cover, Physica D: Nonlinear Phenomena Volume 179, Issues 3-4, 15 May 2003, s. 129-152. DOI=http://dx.doi.org/10.1016/S0167-2789(03)00029-0