^“Extracellular signal-regulated kinases in T cells: characterization of human ERK1 and ERK2 cDNAs”. Biochem. Biophys. Res. Commun.182 (3): 1416–22. (February 1992). doi:10.1016/0006-291X(92)91891-S. PMID1540184.
^“Distinct binding determinants for ERK2/p38alpha and JNK map kinases mediate catalytic activation and substrate selectivity of map kinase phosphatase-1”. J. Biol. Chem.276 (19): 16491–500. (May 2001). doi:10.1074/jbc.M010966200. PMID11278799.
^“Dual-specificity phosphatase 1 ubiquitination in extracellular signal-regulated kinase-mediated control of growth in human hepatocellular carcinoma”. Cancer Res.68 (11): 4192–200. (June 2008). doi:10.1158/0008-5472.CAN-07-6157. PMID18519678.
^“Molecular cloning and characterization of a novel dual specificity phosphatase, LMW-DSP2, that lacks the cdc25 homology domain”. J. Biol. Chem.276 (29): 27575–83. (July 2001). doi:10.1074/jbc.M100408200. PMID11346645.
^“Extracellular regulated kinases (ERK) 1 and ERK2 are authentic substrates for the dual-specificity protein-tyrosine phosphatase VHR. A novel role in down-regulating the ERK pathway”. J. Biol. Chem.274 (19): 13271–80. (May 1999). doi:10.1074/jbc.274.19.13271. PMID10224087.
^ abc“Identification of novel ERK2 substrates through use of an engineered kinase and ATP analogs”. J. Biol. Chem.278 (17): 14926–35. (April 2003). doi:10.1074/jbc.M300485200. PMID12594221.
^“Neither ERK nor JNK/SAPK MAP kinase subtypes are essential for histone H3/HMG-14 phosphorylation or c-fos and c-jun induction”. J. Cell Sci.108 (11): 3599–609. (November 1995). doi:10.1242/jcs.108.11.3599. PMID8586671.
^“Identification of novel point mutations in ERK2 that selectively disrupt binding to MEK1”. J. Biol. Chem.277 (17): 14844–52. (April 2002). doi:10.1074/jbc.M107776200. PMID11823456.
^“Hydrophobic as well as charged residues in both MEK1 and ERK2 are important for their proper docking”. J. Biol. Chem.276 (28): 26509–15. (July 2001). doi:10.1074/jbc.M102769200. PMID11352917.
^“Regulation of stress-responsive mitogen-activated protein (MAP) kinase pathways by TAO2”. J. Biol. Chem.276 (19): 16070–5. (May 2001). doi:10.1074/jbc.M100681200. PMID11279118.
^“Tobacco-specific nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone promotes functional cooperation of Bcl2 and c-Myc through phosphorylation in regulating cell survival and proliferation”. J. Biol. Chem.279 (38): 40209–19. (September 2004). doi:10.1074/jbc.M404056200. PMID15210690.
^“The MAP-kinase ERK2 is a specific substrate of the protein tyrosine phosphatase HePTP”. Oncogene19 (7): 858–69. (February 2000). doi:10.1038/sj.onc.1203408. PMID10702794.
^“Inhibition of T cell signaling by mitogen-activated protein kinase-targeted hematopoietic tyrosine phosphatase (HePTP)”. J. Biol. Chem.274 (17): 11693–700. (April 1999). doi:10.1074/jbc.274.17.11693. PMID10206983.
^ ab“Identification of an extracellular signal-regulated kinase (ERK) docking site in ribosomal S6 kinase, a sequence critical for activation by ERK in vivo”. J. Biol. Chem.274 (5): 2893–8. (January 1999). doi:10.1074/jbc.274.5.2893. PMID9915826.
^ ab“Regulation and interaction of pp90(rsk) isoforms with mitogen-activated protein kinases”. J. Biol. Chem.271 (47): 29773–9. (November 1996). doi:10.1074/jbc.271.47.29773. PMID8939914.
^“Extracellular signal-regulated kinase activated by epidermal growth factor and cell adhesion interacts with and phosphorylates vinexin”. J. Biol. Chem.279 (33): 34570–7. (August 2004). doi:10.1074/jbc.M402304200. PMID15184391.
^“Extracellular signal-regulated kinase (ERK) interacts with signal transducer and activator of transcription (STAT) 5a”. Mol. Endocrinol.13 (4): 555–65. (April 1999). doi:10.1210/mend.13.4.0263. PMID10194762.
^“Growth hormone (GH) induces the formation of protein complexes involving Stat5, Erk2, Shc and serine phosphorylated proteins”. Mol. Cell. Endocrinol.166 (2): 89–99. (August 2000). doi:10.1016/s0303-7207(00)00277-x. PMID10996427.
^“Identification of the Anti-proliferative protein Tob as a MAPK substrate”. J. Biol. Chem.277 (40): 37783–7. (October 2002). doi:10.1074/jbc.M204506200. PMID12151396.
^“Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis”. Cell121 (2): 179–93. (April 2005). doi:10.1016/j.cell.2005.02.031. PMID15851026.
^“Association of a p95 Vav-containing signaling complex with the FcepsilonRI gamma chain in the RBL-2H3 mast cell line. Evidence for a constitutive in vivo association of Vav with Grb2, Raf-1, and ERK2 in an active complex”. J. Biol. Chem.271 (43): 26962–70. (October 1996). doi:10.1074/jbc.271.43.26962. PMID8900182.
^“Vav is associated with signal transducing molecules gp130, Grb2 and Erk2, and is tyrosine phosphorylated in response to interleukin-6”. FEBS Lett.401 (2–3): 133–7. (January 1997). doi:10.1016/s0014-5793(96)01456-1. PMID9013873.
“Tat-induced deregulation of neuronal differentiation and survival by nerve growth factor pathway”. J. Neurovirol.8 Suppl 2 (2): 91–6. (2002). doi:10.1080/13550280290167885. PMID12491158.
“HIV-1 Nef control of cell signalling molecules: multiple strategies to promote virus replication”. J. Biosci.28 (3): 323–35. (2003). doi:10.1007/BF02970151. PMID12734410.
“The ERK1/2 mitogen-activated protein kinase pathway as a master regulator of the G1- to S-phase transition”. Oncogene26 (22): 3227–39. (2007). doi:10.1038/sj.onc.1210414. PMID17496918.