Share to: share facebook share twitter share wa share telegram print page

 

Cuadrado mágico

Cuadrado mágico del Templo de la Sagrada Familia de Barcelona
Cuadrado mágico del grabado Melancolía I, obra de Alberto Durero

Un cuadrado mágico es una tabla de grado primario donde se dispone de una serie de números enteros en un cuadrado o matriz de forma tal que la suma de los números por columnas, filas y diagonales principales sea la misma. Usualmente los números empleados para rellenar las casillas son consecutivos, de 1 a n², siendo n el número de columnas y filas del cuadrado mágico.[1]

Los cuadrados mágicos actualmente no tienen ninguna aplicación técnica conocida que se beneficie de estas características, por lo que siguen recluidos al divertimento, a la curiosidad y al pensamiento matemático. Aparte de esto, en las ciencias ocultas y más concretamente en la magia tienen un lugar destacado. En algunos tipos de técnicas orientales, como en el caso del Ba Gua y del Feng Shui, los cuadrados mágicos tienen gran importancia, tanto por razones filosóficas y numerológicas como prácticas, por ejemplo, al momento de determinar orientaciones y espacios específicos.[2]

Introducción

Consideremos la sucesión matemática 1, 2, 3, 4... 36 (cuadrado de orden 6), y dispongamos los números ordenadamente en dos series dispuestas en zig-zag:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19

Resulta evidente que cualquier par de números alineados verticalmente suma lo mismo ya que a medida que nos desplazamos por las columnas, en la fila superior se añade una unidad, mientras que en la fila inferior se resta. La suma es en todos los casos la de los números extremos:

1 2 3 4 5 6
12 11 10 9 8 7
13 14 15 16 17 18
24 23 22 21 20 19
25 26 27 28 29 30
36 35 34 33 32 31

Si disponemos el conjunto de números en seis filas (ver tabla a la derecha), fácilmente se puede apreciar que las sumas en las distintas columnas han de ser necesariamente iguales, ya que los números se encuentran agrupados por pares tal y como estaban en el primer caso (compárese los pares de filas 1.ª-6ª, 2ª-5ª y 3ª-4ª con la disposición original). Ahora sin embargo, por ser tres los pares de filas (n/2), la suma será:

cantidad que se denomina constante mágica, y que en nuestro caso es n×(n² + 1)/2 = 6×(36 + 1)/2 = 111.

Orden n 3 4 5 6 7 8 9 10 11 12 13
M2 (n) 15 34 65 111 175 260 369 505 671 870 1105

Salta a la vista que el cuadro anterior no es un cuadrado mágico, ya que al disponerse los números de forma consecutiva, las sumas de las cifras de cada fila son cada vez mayores. Sin embargo hemos encontrado seis series de números comprendidos entre 1 y 36, de forma tal que, sin repetirse ninguno, las sumas de las series son la constante mágica. Si en vez de la disposición anterior colocamos los números consecutivamente, obtenemos una disposición en la que los números de la diagonal principal se pueden escribir de la forma (a-1)×n + a.

Calculando la suma, sabiendo que las filas a van de 1 a n:

De nuevo la constante mágica. Más aún, cualquier serie de seis valores en los que no haya dos de la misma fila o columna sumará la constante mágica. Escribiendo el término i, j de la matriz como (i-1)×n + j, y tomando 6 términos cualesquiera con la condición de que ni i, ni j se repitan y varíen de 1 hasta n, la ecuación resultante será exactamente la misma que en el caso anterior y la suma, por tanto, la constante mágica.

Como se puede demostrar, la cantidad de series posibles de n números que cumplan la condición anterior es n!, 720 en cuadrados de orden 6, y ni siquiera son todas las posibles, ya que antes habíamos obtenido seis que no están incluidas entre ellas.

De orden 3 existe un único cuadrado mágico (las distintas variaciones se pueden obtener por rotación o reflexión), en 1693 Bernard Frenicle de Bessy estableció que hay 880 clases de cuadrados mágicos de orden 4. [3][4]​ Posteriormente se ha encontrado que existen 275.305.224 cuadrados mágicos de orden 5; el número de cuadrados de mayor orden se desconoce aún pero según estimaciones de Klaus Pinn y C. Wieczerkowski realizadas en 1998 mediante los métodos de Montecarlo y de mecánica estadística existen (1,7745 ± 0,0016) × 1019 cuadrados de orden 6 y (3,7982 ± 0,0004) × 1034 cuadrados de orden 7.

Por lo que respecta a órdenes inferiores, es evidente que de orden uno existe un único cuadrado mágico,   1  , mientras que de orden 2 no existe ninguno, lo que se puede demostrar considerando el cuadrado mágico a, b, c, d de la figura; para que tal disposición fuera un cuadrado mágico deberían cumplirse las siguientes ecuaciones (siendo M la constante mágica o cualquier cantidad, si se quiere):

a b
c d
a + b = M
a + c = M
a + d = M
b + c = M
b + d = M
c + d = M

escribiendo el sistema de ecuaciones en forma matricial y buscando el orden de la matriz de coeficientes, se obtiene que es tres, mientras que el número de incógnitas es cuatro, de modo que el sistema solo tiene la solución trivial a = b = c = d = M/2 siendo imposible construir un cuadrado mágico en el que las cuatro cifras sean distintas.

Resumiendo: la cantidad de diferentes n×n cuadrados mágicos para n entre 1 y 5, sin contar rotaciones y reflexiones, son:

1, 0, 1, 880, 275305224 (sucesión A006052 en OEIS).

Para s = 6 se ha estimado que hay aproximadamente 1.7745×1019.


The Astronomical Phenomena (Tien Yuan Fa Wei).
Compilado por Bao Yunlong en el siglo XIII,
edición de la Dinastía Ming, 1457-1463.

Biblioteca del Congreso de los EE.UU.

Historia

4 9 2
3 5 7
8 1 6

Muchos de los aspectos históricos de los cuadrados mágicos no se conservan. Y al ser comprobables, estos aspectos resultan innecesarios. El cuadro Melancolía I 1514 de Alberto Durero, sigue existiendo, lo mismo que el edificio de la Sagrada Familia.

En la antigua China ya se conocían los cuadrados mágicos desde el III milenio a. C., como dice el Lo Shu.[4]​ Según la leyenda, un cierto día se produjo el desbordamiento de un río; la gente, temerosa, intentó hacer una ofrenda al dios del río Lo (uno de los desbordados) para calmar su ira. Sin embargo, cada vez que lo hacían, aparecía una tortuga que rondaba la ofrenda sin aceptarla, hasta que un chico se dio cuenta de las peculiares marcas del caparazón de la tortuga, de este modo pudieron incluir en su ofrenda la cantidad pedida (15), quedando el dios satisfecho y volviendo las aguas a su cauce.

Igualmente conocieron combinaciones de esta clase los indios, egipcios, árabes y griegos. A tales cuadrados, las diferentes culturas les han atribuido propiedades astrológicas y adivinatorias portentosas grabándose con frecuencia en talismanes. Así, como recoge Cornelius Agrippa en De oculta philosophia libri tres (1533), el cuadrado de orden 3 (15) estaba consagrado a Saturno, el de 4 (34) a Júpiter, el de 5 (65) a Marte, el del 6 (111) al Sol, el del 7 (175) a Venus, el del 8 (260) a Mercurio y el de 9 (369) a la Luna; idéntica atribución puede encontrarse en la astrología hindú.

La introducción de los cuadrados mágicos en occidente se atribuye a Manuel Moscópulo en torno al siglo XIV, autor de un manuscrito en el que por vez primera se explican algunos métodos para construirlos. Con posterioridad, el estudio de sus propiedades, ya con carácter científico, atrajo la atención de grandes matemáticos que dedicaron al asunto obras diversas a pesar de la manifiesta inutilidad práctica de los cuadrados mágicos. Entre ellos cabe citar a Stifel, Fermat, Pascal, Leibnitz, Frénicle, Bachet, La Hire, Saurin, Euler,... diríase que ningún matemático ilustre ha podido escapar a su hechizo.

Melancolía I, grabado de Alberto Durero; el cuadrado mágico aparece en la esquina superior derecha.

El cuadrado mágico de Alberto Durero

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1
Melancolía I está considerado el primero de las artes europeas. En el cuadrado de orden cuatro se obtiene la constante mágica (34) en filas, columnas, diagonales principales, y en las cuatro submatrices de orden 2 en las que puede dividirse el cuadrado, sumando los números de las esquinas, los cuatro números centrales, los dos números centrales de las filas (o columnas) primera y última, etc. y siendo las dos cifras centrales de la última fila 1514 el año de ejecución de la obra.

Algunas disposiciones particulares en el cuadrado mágico de Durero que suman la constante mágica.

16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1
16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1
16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1
16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1
16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1
Fachada de la Sagrada Familia

El cuadrado mágico de la Sagrada Familia

La Fachada de la Pasión del Templo Expiatorio de la Sagrada Familia en Barcelona, diseñada por el escultor Josep María Subirachs, muestra un cuadrado mágico de orden 4.

La constante mágica del cuadrado es 33, la edad de Jesucristo en la Pasión. También se ha atribuido la elección de este número como una velada alusión a la supuesta adscripción masónica, que nunca ha sido demostrada, de Antonio Gaudí, ya que 33 son los grados tradicionales de la masonería. Estructuralmente, es muy similar al cuadrado mágico de Melancolía, pero dos de los números del cuadrado (el 12 y el 16) están disminuidos en dos unidades (10 y 14) con lo que aparecen repeticiones. Esto permite rebajar la constante mágica en 1.

Los cuadrados triviales como éste no suelen tener interés matemático y sólo tienen importancia histórica. Lee Sallows ha señalado que, debido a la ignorancia de Subirachs de la teoría del cuadrado mágico, el famoso escultor cometió un error innecesario, y apoya esta afirmación dando varios ejemplos de cuadrados mágicos no triviales de 4×4 que muestran la constante mágica deseada de 33.[5]

Cuadrado Mágico "Virgen del Calvario" de Zurgena

Cuadrado mágico de Zurgena (Almería)

Todos los que, con más o menos frecuencia, visitáis donde se venera la Virgen del Calvario conocida familiarmente como “Virgencica” del Calvario habéis podido observar las diversas obras que desde el año 1992 se están llevado a cabo para su conservación y adecuación, sobre todo el arreglo de los techos como única alternativa posible para evitar su derrumbe.

Tanto en las primeras obras de conservación como las que actualmente estamos llevando a cabo de ampliación, una parte importante de los fondos necesarios se han obtenido fundamentalmente de la venta del NUMERO 54.713 de la Lotería de Navidad y de la LOTERÍA PRIMITIVA existente.

Como homenaje a todos los que colaboran con su aportación económica participando en alguno de estos juegos y para que perdure el recuerdo con el paso del tiempo, en uno de los laterales de las obras de ampliación (se adjuntan fotos con detalle de su ubicación), hay colocadas dos placas con los números  que componen cada uno de los mencionados juegos -Lotería y Primitiva-, los cuales están distribuidos de una manera un poco especial y vinculándolos entre sí con una serie de características y peculiaridades, tal y como se indica seguidamente para conocimiento en general y de los colaboradores en particular.

  • Los cuadrados mágicos, son un conjunto de números enteros diferentes colocados en las casillas de un cuadrado y que se caracterizan porque la sumas de sus filas, columnas y diagonales principales es siempre la misma, el valor de la suma es denominado Constante mágica del Cuadrado. Los números empleados para rellenar las casillas son consecutivos, de n², siendo n el número de columnas y filas del cuadrado mágico.
  • Existen multitud de variantes de los cuadrados mágicos simples, así como métodos alternativos de construcción de los mismos. Aquí nos limitamos en hacer una breve descripción de algunas de las variantes existentes.
  • Hay, cuadrados mágicos que continúan siendo mágicos cuando se les quita una banda exterior; incluso los hay que continúan siendo mágicos si se les quita una banda y luego una segunda banda. Estas características las reúne “nuestro cuadrado mágico”.
  • El cuadrado mágico de “Virgen del Calvario” es de orden 7, tiene por constante mágica 175 (los cuarenta y nueve números del juego de ); el cuadrado interior es de orden 5 que comprende los números centrales de la serie anterior ( 37), también es mágico y tiene por constante mágica 125, al igual que el cuadrado de orden tres central (números 22) que tiene una constante mágica de 75.


  • La suma en forma de cruz de los números es: 100  


  • La suma de las puntas de los números de las casillas es: 100  


  • La suma del cuadrado de los números que forman el número de NAVIDAD  es de: 100


  • Uniendo todas las casillas de forma correlativa con una línea desde el número 1 hasta el número 49, podremos observar que se forma una “Estrella de Oriente” en cuyo centro se encuentra la casilla con el número 25 y en este día del mes de diciembre, los cristianos celebran el nacimiento de Jesús y en este mes también se juega de Navidad.


Cuadrado Mágico de Foz

Cuadrado mágico de Foz (Lugo)

Este cuadrado mágico en la fachada de una casa en Foz (Lugo) tiene los números en azulejos de cuatro colores diferentes que no se repiten (rojo, amarillo, azul y verde) en ninguno de los 20 grupos de cuatro números que tienen la constante mágica de 34

4 líneas verticales, 4 líneas horizontales, 2 líneas diagonales, la 4 esquinas del cuadrado y las 4 esquinas de los 4 cuadrados de 3x3, 5 cuadrados de 2x2 (el centro del cuadrado y los que forman la cuarta parte del cuadrado)

Cuadrado Mágico Aritmético

Cuadrados mágicos de orden impar (I)

Estos cuadrados pueden generarse según el método publicado en 1691 por Simón de la Loubere, llamado a veces método siamés, país en el que desempeñó el cargo de embajador de Luis XIV, método ya conocido por los astrólogos orientales. Comenzando en la casilla central de la primera fila con el primer número, se rellena la diagonal quebrada con los siguientes en sentido NO (o NE). Completada la primera diagonal se desciende una posición y se rellena la segunda en el mismo sentido que la anterior, repitiéndose el paso anterior con el resto de diagonales hasta completar el cuadrado. Las Ternas pitagóricas y los Cuadrados mágicos se ordenan en forma precisa en los Cuadrados mágicos de orden impar

Obviamente, se podría haber comenzado en cualquiera de las casillas centrales de las filas o columnas perimetrales, siendo en cada caso la dirección de las diagonales hacia fuera del cuadrado y el sentido del desplazamiento una vez finalizada cada diagonal el dado por la posición relativa del centro del cuadrado respecto de la casilla inicial.

Resulta evidente que comenzando por cualquier otra casilla las sumas de las filas y columnas será la constante mágica, ya que la posición relativa de las cifras será la misma que en el caso anterior; sin embargo, en la diagonal paralela a la dirección de rellenado no se cumplirá esta condición (sí en la otra). De hecho, la particular elección de la casilla inicial responde a la necesidad de que en la diagonal paralela a la dirección de llenado se coloquen consecutivamente los cinco números centrales de la serie ya que cualesquiera otros cinco números consecutivos no sumarán la constante mágica.


Cuadrados mágicos de orden impar (II)

Paso 1: Se escriben los números del 1 al n². Se escribe el 1 en la casilla superior del rombo y se seguirá de forma oblicua como se ve en este ejemplo. El cuadrado mágico será un cuadrado inscrito en el rombo que hemos formado.

        1        
      6   2      
    11   7   3    
  16   12   8   4  
21   17   13   9    5 
  22   18   14   10  
    23   19   15    
      24   20      
        25        

Paso 2: Trasladamos los números de las esquinas del rombo a las casillas vacías que hay en el lado opuesto del cuadrado.

        1        
      6   2      
    11 24 7 20 3    
  16 4 12 25 8 16 4  
21   17 5 13 21 9    5 
  22 10 18 1 14 22 10  
    23 6 19 2 15    
      24   20      
        25        

Paso 3: Quitamos las esquinas del rombo: ya tenemos un cuadrado mágico de orden impar.

11 24 7 20 3
4 12 25 8 16
17 5 13 21 9
10 18 1 14 22
23 6 19 2 15

Cuadrados mágicos de orden múltiplo de 4

Se construye un cuadrado con los números dispuestos consecutivamente (véase el segundo cuadrado de orden seis de la introducción), disposición en la que como sabemos, las sumas de las diagonales son la constante mágica. Una vez hecho esto, y conservando la submatriz central de orden n/2 y las cuatro submatrices de esquina de orden n/4 los números restantes se giran 180° respecto del centro del cuadrado, o si se prefiere se recolocan en orden decreciente (en ambos casos el resultado es el mismo).

Partiendo de la misma disposición y escogiendo patrones simétricos similares de las cifras a conservar pueden construirse cuadrados mágicos diferentes al obtenido antes, como el siguiente:

Cuadrados mágicos de orden múltiplo de 4 más 2

Para construir esta clase de cuadrados se puede usar el método LUX. En parte se basa en el método de la Loubere, que se usa en la construcción de cuadrados mágicos de orden impar (ver más arriba).

Como ejemplo, vamos a construir un cuadrado mágico de lado 10.

1º paso:

Vamos a agrupar las casillas en subcuadrados de 2x2, y cada uno de ellos lo etiquetaremos de la siguiente forma:

- Los cuadrados de las k+1 primeras filas, donde k es la división entera del tamaño del cuadrado entre cuatro, se etiquetan con la letra L (3 filas en este caso).

- Los cuadrados de la siguiente fila se etiquetan con la letra U.

- Los cuadrados de las filas restantes se etiquetan con la letra X.

Estas letras más adelante nos indicarán cómo rellenar cada subcuadrado de 2x2.

                                       
    L     L     L     L     L
                                       
    L     L     L     L     L
                                       
    L     L     L     L     L
                                       
    U     U     U     U     U
                                       
    X     X     X     X     X

2º paso:

Se intercambia el cuadrado U central con el cuadrado L inmediatamente superior.

                                       
    L     L     L     L     L
                                       
    L     L     L     L     L
                                       
    L     L     U     L     L
                                       
    U     U     L     U     U
                                       
    X     X     X     X     X

3º paso:

Etiquetaremos cada subcuadrado de 2x2 con un número siguiendo el método de la Loubere. De esta forma indicaremos el orden en el que se va a rellenar cada subcuadrado.

17     24     1     8     15    
    L     L     L     L     L
23     5     7     14     16    
    L     L     L     L     L
4     6     13     20     22    
    L     L     U     L     L
10     12     19     21     3    
    U     U     L     U     U
11     18     25     2     9    
    X     X     X     X     X

4º paso:

Ahora, al subcuadrado i-ésimo le corresponden los números 4i - 3, 4i - 2, 4i - 1 y 4i. Por ejemplo, al subcuadrado 10 le corresponden los números 37, 38, 39, y 40.

Solo nos falta saber cómo se colocan los cuatro números dentro de su subcuadrado correspondiente, y ahí entra en juego el etiquetado LUX.

4.º número 1.º número
2.º número 3.º número
Subcuadrado tipo L
1.º número 4.º número
2.º número 3.º número
Subcuadrado tipo U
1.º número 4.º número
3.º número 2.º número
Subcuadrado tipo X

Como puede verse, las letras recuerdan a la forma que hacen los números al colocarse en cada cuadrado.

Con todos estos elementos ya puede construirse el cuadrado:

68 65 96 93 4 1 32 29 60 57
66 67 94 95 2 3 30 31 58 59
92 89 20 17 28 25 56 53 64 61
90 91 18 19 26 27 54 55 62 63
16 13 24 21 49 52 80 77 88 85
14 15 22 23 50 51 78 79 86 87
37 40 45 48 76 73 81 84 9 12
38 39 46 47 74 75 82 83 10 11
41 44 69 72 97 100 5 8 33 36
43 42 71 70 99 98 7 6 35 34

Variantes

Existen multitud de variantes de los cuadrados mágicos simples que acabamos de describir, así como métodos alternativos de construcción de los mismos que pueden encontrarse en las páginas abajo indicadas, de modo que aquí nos limitaremos a hacer una breve descripción de algunas de la variantes existentes.

49 48 11 46 6 12 3
7 13 14 31 32 35 43
8 30 28 21 26 20 42
45 33 23 25 27 17 5
9 34 24 29 22 16 41
10 15 36 19 18 37 40
47 2 39 4 44 38 1


Hay, por ejemplo, cuadrados mágicos que continúan siendo mágicos cuando se les quita una banda exterior; incluso los hay que continúan siendo mágicos si se les quita una banda y luego una segunda banda.

El cuadrado completo de la figura, de orden 7, tiene por constante mágica 175 (los cuarenta y nueve primeros números); el cuadrado interior de orden 5 que comprende los números centrales de la serie anterior (13 a 37), también es mágico y tiene por constante mágica 125, al igual que el cuadrado de orden tres central (números 21 a 29) que tiene una constante mágica de 75.

7 2 11 14
9 16 5 4
6 3 10 15
12 13 8 1

Algunos cuadrados conservan la suma mágica a lo largo de todas las diagonales quebradas, además de filas, columnas y diagonales principales, como el de la derecha. Estas disposiciones se suelen denominar cuadrados diabólicos, aunque también se llama a veces así al cuadrado de Durero que no cumple esta condición. Este último también se ha llamado a veces cuadrado satánico porque existen muchas combinaciones, ciertamente peculiares, de números simétricamente distribuidos a lo largo de la matriz con los que se consigue la suma mágica, como ya mostramos con anterioridad cuando hablamos de él. Al respecto cabe recordar que el número de combinaciones de n cifras, tomadas de la serie aritmética 1 a n×n, es incluso superior al de cuadrados que se pueden construir con dichas cifras, por lo que encontrar disposiciones aparentemente peculiares tales que se obtenga la suma mágica es más común de lo que se cree. Si nos fijamos por ejemplo en el cuadrado diabólico de la figura, veremos que tales disposiciones también suman 34 (las cuatro esquinas y las cuatro centrales, las cuatro submatrices de orden cuatro, etc., y, además, las diagonales quebradas. Aunque en él no aparece la fecha de creación de Melancolía I como sucedía en el cuadrado mágico de Durero, en el que existen más de 34 combinaciones).

Si entendemos los cuadrados mágicos como matrices, con sus operaciones usuales de miniatura y producto, el cuadrado mágico de orden 3 tiene la interesante propiedad de que su matriz inversa vuelve a ser un cuadrado mágico que tiene valores fraccionarios positivos y negativos y cuya constante mágica es 1/15.

Este es el cuadrado mágico de orden 3 habitual...

4 9 2
3 5 7
8 1 6

...y este es su cuadrado mágico inverso.

23/360 -52/360 53/360
38/360 8/360 -22/360
-37/360 68/360 -7/360

Los cuadrados p-mágicos son aquellos tales que elevadas todas las cifras del cuadrado a la k potencia, siendo 1≤kp, siguen siendo mágicos:

  • El cuadrado bi-mágico menor conocido es el de orden 8 mostrado más adelante y que tiene por constantes mágicas 260 (k=1) y 11180 (k=2). Se conjetura que no existen cuadrados bi-mágicos de orden inferior, aunque no existe prueba concluyente de ello. En 1998, J. R. Hendricks demostró que es imposible construir cuadrados bi-mágicos de orden 3, salvo el que contiene 9 cifras iguales, que de mágico tiene más bien poco.
  • Se han construido cuadrados tri-mágicos de órdenes 12, 32, 64, 81 y 128; el único de orden 12 fue construido por el matemático alemán Walter Trump en junio de 2002.
  • El primer cuadrado tetra-mágico, de orden 64, lo obtuvo Andrés González, en junio de 1998, usando números del 1 al 4096 sin repetir ninguno de ellos. Puede segregarse en 64 tableros de ajedrez y siempre sumaría igual, indistintamende de la posición en las que resulten las filas norte, sur, este y oeste. Según González, en esta obra no se usó ningún ordenador para cuadrarlo. El cuadro se encuentra registrado en el Archivo Internacional Central de Objetos de Arte. [2] (enlace roto disponible en Internet Archive; véase el historial, la primera versión y la última).
  • El primer cuadrado tetra-mágico, de orden 512, fue obtenido por André Viricel y Christian Boyer en mayo de 2001; en junio del mismo año presentaron el primer cuadrado penta-mágico, de orden 1024. Ya en 2003, presentaron un cuadrado tetra-mágico de orden 256 y el matemático chino Li Wen uno penta-mágico de orden 729.
16 41 36 5 27 62 55 18
26 63 54 19 13 44 33 8
1 40 45 12 22 51 58 31
23 50 59 30 4 37 48 9
38 3 10 47 49 24 29 60
52 21 32 57 39 2 11 46
43 14 7 34 64 25 20 53
61 28 17 56 42 15 6 35
    
1 22 33 41 62 66 79 83 104 112 123 144
9 119 45 115 107 93 52 38 30 100 26 136
75 141 35 48 57 14 131 88 97 110 4 70
74 8 106 49 12 43 102 133 96 39 137 71
140 101 124 42 60 37 108 85 103 21 44 5
122 76 142 86 67 126 19 78 59 3 69 23
55 27 95 135 130 89 56 15 10 50 118 90
132 117 68 91 11 99 46 134 54 77 28 13
73 64 2 121 109 32 113 36 24 143 81 72
58 98 84 116 138 16 129 7 29 61 47 87
80 34 105 6 92 127 18 53 139 40 111 65
51 63 31 20 25 128 17 120 125 114 82 94
Cuadrado bi-mágico de orden 8
(constantes mágicas 260 y 11.180)
Cuadrado tri-mágico de orden 12
(constantes mágicas 870, 83.810 y 9 082.800)

Pueden construirse cuadrados mágicos con números extraídos de cualquier sucesión aritmética independientemente del número inicial y de la razón de la serie. Siendo a0 el primer término y r la razón, fácilmente se demuestra que la constante mágica será en este caso:

Análogamente, se pueden construir cuadrados mágicos a partir de sucesiones geométricas, en cuyo caso serán los productos los que den por resultado la constante mágica. Estos pueden construirse con las reglas dadas para los cuadrados aritméticos, sin más que sustituir el término de la serie geométrica en la posición indicada por la correspondiente de la serie aritmética:

Sucesión
aritmética
6 1 8
7 5 3
2 9 4
     Correspondencia
1 2 3 4 5 6 7 8 9
1 2 4 8 16 32 64 128 256
     Sucesión
geométrica
32 1 128
64 16 4
2 256 8

La constante mágica es en el caso general

cuya similitud con la ya obtenida para las series aritméticas es palpable.

También se han construido cuadrados mágicos con series de números primos consecutivos, o con las cifras decimales de los recíprocos de la serie aritmética de los números naturales.

Por último señalaremos la existencia de disposiciones mágicas n-dimensionales; así, con la serie 1 - n³ pueden construirse cubos mágicos, y en general, con la serie 1 - nr cuadrados mágicos r-dimensionales de orden n, con sus respectivas variantes multi-mágicas y cuya visualización no es inmediata, aunque pueden tratarse cómodamente mediante el empleo de computadoras.

Cuadrados mágicos esotéricos

Para el mago, un cuadrado mágico es mucho más que para un matemático la tabla de logaritmos.

El uso e importancia en la magia

Los cuadrados mágicos, se conocen desde la antigüedad y han sido empleados siempre en rituales de magia. Para el mago, los cuadrados mágicos expresan en diferentes planos, manifestaciones de la realidad espiritual, un conocimiento directamente aplicable en diversas formas. Las más frecuentes son:

  • Valores numéricos obtenidos por diversas fórmulas, que pueden utilizarse para conocer cantidades y proporciones exactas para determinadas operaciones (por lo general deben cumplir ciertas normas).
  • Signos que resultan de unir con líneas números concretos de un cuadrado mágico concreto. Tales signos se conocen como firmas y refieren a atributos (cualidades) de la potencia a invocar. Dichos signos deben ser revelados por la entidad a la que el cuadrado está destinado. Para usarlos luego, basta trazarlas con una tinta especial sobre casi cualquier superficie y realizar un sencillo ritual para solicitar sus atributos.
  • El propio cuadrado mágico esotérico, grabado o realizado con materiales y fórmulas precisas y luego consagrados en un ritual (que consiste básicamente en oraciones), puede luego ser llevado consigo como talismán.

Por un lado se considera que cada ángel y demonio (en general denominados inteligencias, sin entrar en jerarquías) está en sintonía (influencia) con un cuadrado determinado, algo así a lo que hoy entendemos por resonancia. Por otro el trazo de líneas seguidas que resulta de recorrer en el orden correcto de los valores, así como otros órdenes más complejos, describen símbolos (firmas) asociados a entidades espirituales, donde en el ritual correcto, dibujar el signo con la tinta elaborada exprofeso de forma precisa, equivale a invocar al espíritu al que se hace referencia (llamándolo por su nombre), y donde el espíritu evocado está obligado a comparecer y/o a cumplir las virtudes asociadas al signo trazado.

Invocar entidades con ayuda de los signos del cuadrado mágico

En magia, invocar a una entidad por su nombre solo es posible si se conoce previamente su nombre y se pronuncia correctamente, lo que, de alguna manera, entraña ciertos riesgos. Con la multiplicidad de idiomas surge ese problema y por tanto la pronunciación correcta dejaría inutilizado todo conocimiento previo, si no se ha trasmitido con el mismo la correcta pronunciación de los nombres.

Por ello, la ventaja del procedimiento de los trazos del cuadrado mágico, lo hace universal. Aún desconociendo el nombre de un espíritu, utilizando correctamente el modelo del trazo se efectúa la invocación de los espíritus. Los cuadrados mágicos son empleados para establecer un llamamiento correcto a una entidad espiritual, marcando los trazos que dicha entidad tenga establecido para sí. Una vez comparezca la entidad puede reclamársele que exprese su nombre e incluso que le enseñe otros atributos que el mago desconoce sobre dicha entidad.

Hay dos acciones que en magia se distinguen claramente aunque coloquialmente suelen usarse indistintamente, es preciso diferenciarlas:

  • Evocar: Es solicitar la presencia de una entidad, para que comparezca ante el mago. Allí donde está el mago una entidad hace manifiesta su presencia mediante sonidos, luces y sombras o formas más o menos corpóreas así como olores y sonidos bastante indescriptibles algunos.
  • Invocar: Es solicitar que se cumpla una petición. La entidad no hace acto de comparecer, aunque el mago puede recibir impresiones internas de su manifestación. dichas manifestaciones en cambio no tienen por qué recibirlas otros asistentes en caso de haberlos.

También son usados sin requerir la presencia de las entidades referenciadas, mediante peticiones por escrito, si ya se conoce el efecto de los signos, en tal caso, basta trazar el signo y hacer uso de las oraciones pertinentes. También, cuando no se quieran usar signos o no se conozcan de modo más general, puede trazarse completamente el cuadrado que corresponda a la entidad que se quiera invocar, junto a alguno de sus nombres este es el caso de los llamados amuletos y talismanes.

Cuando se evoca o invoca a una entidad, puede hacerse uso de las propiedades (o poderes) que el ente espiritual tiene asignados. Partiendo del cuadrado mágico del que le es asociado, existen diferentes trazos que invocan a cada uno de sus poderes (atributos), y que recuerdan más a cualquier fórmula de oración propia de otras tradiciones o religiones.

Es común que una entidad tenga más de 1 nombre, ya que cada nombre suele hacer referencia a uno de sus atributos.

En la alta magia, la primera operación cuando una entidad concurre a la llamada es pedir que descubra al mago los diferentes trazos que le son propios, para que este con posterioridad pueda invocar sus poderes. Una vez conocidos estos, el mago tiene la obligación de guardar celosamente los mismos, cuidando que no caigan en manos afrentosas y a menudo el propio mago se cuida de alterarlos a voluntad (cifrarlos diríamos hoy) para que en tal circunstancia no puedan ser usados sin un conocimiento profundo tanto del trazo como de lo que suponen tales potencias.

Los rituales para invocar la ejecución de los poderes son relativamente fáciles una vez se conocen los trazos (atributos de la entidad), todos son una derivación del ritual principal de evocación, donde se remplaza la exigencia de comparecencia por la petición de lo que se desea en forma de oración, tanto en una como en otra se alaban las virtudes del ente y la confianza ciega de que cumplirá lo pedido, pactado o prometido. El ritual siempre conlleva medidas de protección contra inteligencias hostiles a la raza humana.

Los magos siempre han insistido sobre los aspirantes en la importancia de no intentar hacer uso de ellos, sin un conocimiento profundo teórico antes de pasar al práctico, bajo la pena de sufrir en su propia carne tormentos indescriptibles.

Duración de los efectos

El cuadrado mágico, los signos derivados, etc. carecen de toda utilidad si el mago no lo fabrica siguiendo ciertas reglas sobre materiales a usar, aspectos zodiacales relativos a iniciar su elaboración, etc. así como sin los rituales finales de consagración y uso.

Cuando se porta un cuadrado mágico como talismán basta el ritual de consagración, los signos en cambio requieren un ritual de uso, ya que solo sirven para el uso a que se haya declarado y solo para esa vez. El tiempo que deba durar su efecto depende del uso a que se destina, por ejemplo si se reclama la comparecencia de un espíritu su duración es efímera, dura por tanto hasta que se despida a la entidad, en cambio si se usa por ejemplo para hacer crecer una planta, su efecto se prolonga algunos meses en el tiempo.

En general para efectos de larga duración se emplea el cuadrado mágico entero como talismán. Y para efectos inmediatos, suelen usarse los signos que se trazan sobre el cuadrado mágico. La evocación es más potente que la invocación pero también entraña elevados riesgos para el mago, especialmente para el aspirante a mago que puede dejarse fácilmente impresionar y sucumbir a las exigencias de la entidad, especialmente si la entidad que comparece es hostil a la raza humana o una entidad se hace pasar por otra y el mago o el aspirante a mago no toma las medidas necesarias.

Descripción de propiedades de los cuadrados mágicos esotéricos

Nota: para apreciar las comparaciones, para los cuadrados mágicos esotéricos, se ha tomado otros colores, diferentes a los empleados hasta aquí.

Un cuadrado mágico esotérico, utiliza criterios más restrictivos en cuanto a condicionantes para ser tenido por un cuadrado mágico, tanto es así, que solo existe uno por cada n. A fin de reconocer cuáles son esotéricos y cuáles no (o siendo equivalentes reducirlos a su expresión correcta) es importante conocer las propiedades que los relacionan e identifican.

  • La propiedad de equivalencia establece que 2 o más cuadrados son semejantes si todas sus casillas varían en la misma proporción, el esotérico, no puede ser cualquiera, sino solo 1, tal como se expresa en su apartado, pero que puede ser reducido al cuadrado mágico esotérico equivalente.
  • La propiedad de las esquinas propone un método rápido de descartar cuadrados mágicos si no cumplen dicha propiedad, los que pasen la criba no pueden todavía ser admitidos.
  • Las propiedades del centro, posicionales y diagonales tiene por objeto aprender a reconocer cuadrados mágicos esotéricos, así como a fabricarlos.

Propiedad de equivalencia

28 21 26
23 25 27
24 29 22


8 1 6
3 5 7
4 9 2

En sentido esotérico, solo se considera cuadrado mágico, a aquellos que tienen las mismas cifras que el número de casillas (que siguen la serie de números naturales desde 1 hasta n²). El cuadrado de la figura (color naranja, a la izquierda) no es un cuadrado mágico esotérico. En este caso es el resultado de un cuadrado mágico de n=3 a cuyas cifras se le ha sumado 20, comparar con el original (color naranja a la derecha) de n=3, viendo la ubicación de las cifras y su concordancia.


Propiedad de las esquinas

  • En sentido esotérico, un cuadrado mágico, debe reunir unas condiciones de suma de sus esquinas (que llamamos Cifra mágica-2, o de segundo orden). Explicación de como se halla:
  • Si llamamos Composición al sumatorio de los números que componen el cuadrado mágico: C= sum (1+2+3....), o también C= ((n²+1)×(n²/2)...
  • ...y si llamamos Número base (Nb) a la Composición dividida entre el número de casillas que componen el cuadrado, tendremos que Nb= C / (n²). El número base también puede calcularse de la siguiente manera: Nb= (n²+1)/2 (obsérvese en la tabla adjunta más abajo la relación de sus cifras entre ambas columnas donde Nb es casi la mitad de ). El número base en un cuadrado mágico esotérico de n= impar siempre aparece en la casilla central, lo que en cierto modo ayuda a reconocer y rechazar de un simple vistazo los que no cumplan dicha condición. (Véase la sección propiedades posicionales más abajo para más detalles).
  • También obtenemos la Cifra mágica, al multiplicar el Número base por n Cm=Nb×n (o a la inversa, obtenemos Nb, al dividir la Cifra mágica entre n Nb= Cm/n).


r _ _ s
_ _ _ _
_ _ _ _
t _ _ u


r _ s
_ _ _
t _ u
Y siendo Cifra mágica-2 la suma de las esquinas entonces: Cm2= r+s+t+u
Entonces Cm2, la suma de las esquinas Cm2= Cm - (Nb( n-4))
O también (partiendo de que Cm=Nb×n): Cm2= Nb×n - (Nb(n-4)).
O reduciendo: Cm2= 4Cm / n.
Se señalan en los dibujos las casillas de esquina, para cuadrados de n=4 y n=3
  • Se deduce que si el cuadrado tiene menos esquinas de 4, entonces dicha cifra es sumada, que si es mayor de 4 esquinas, la cifra es restada. Para el caso de 4 esquinas exactas, ni se suma ni se resta, o bien se suma y se resta, (como prefiera ser considerado).
  • Podemos comprobar que en el cuadrado mágico de 4 la suma de las 4 esquinas Cm2 =Cm (Cifra mágica2= Cifra mágica).

También la suma de las cifras de las 4 casillas que forman una cruz (las que están en el medio entre dos esquinas adyacentes), suman Cm2. La particularidad de n=par_impar produce dos casos.


_ C _
R _ U
_ Z _


_ _ C1 C2 _ _
_ _ _ _ _ _
R1 _ _ _ _ U1
R2 _ _ _ _ U2
_ _ _ _ _ _
_ _ Z1 Z2 _ _
  • Para el caso de n=impar: Cm2= C +R +U +Z (dibujo de la izquierda).
  • Y para el caso de n=par las dos casillas adyacentes que forman la cruz en las mismas condiciones, solo que en este caso al ser dos grupos de 4 casillas, es dos veces CM; =2 Cm2): Cm2=(C1 +C2 +R1 +R2 + U1 +U2 +Z1 +Z2 )/2 (dibujo de la derecha).

Se muestran un cuadrado de n=3 para ejemplo de caso impar, y uno de n=6 para ejemplo de caso par. Obsérvese que del caso par, se toman las dos casillas centrales de CRUZ, razón, por la que hay que dividir luego entre dos.


  • Se ha remarcado en la tabla el ejemplo mostrado sobre el cuadrado mágico con el caso de n= 7: al aplicar C=1225; Nb=25; Cm= 25×7=175; Cm2= 175- (25(7-4)=100
  • Se puede comprobar Cm2=R+S+T+U, (las esquinas, en amarillo 22 + 4 + 46 + 28 ) = 100
  • Igualmente se puede comprobar Cm2=C+R+U+Z,(los centros en cruz, en oscuro 41 + 13 + 9 + 37 ) = 100
Es decir C+R+U+Z=R+S+T+U


lado n del cuadrado Casillas n×n Sumatorio (n²+1)×(n²/2) Cifra mágica C/n Número base Cm/n Cifra mágica-2 Cm2= 4Cm / n
n C Cm Nb Cm2
1 1 1 1 1 4 No mág.
2 4 10 5 2,5 10 No mág.
3 9 45 15 5 20
4 16 136 34 8,5 34
5 25 325 65 13 52
6 36 666 111 18,5 74
7 49 1225 175 25 100
8 64 2080 260 32,5 130
9 81 3321 369 41 164


22 47 16 41 10 35 4
5 23 48 17 42 11 29
30 6 24 49 18 36 12
13 31 7 25 43 19 37
38 14 32 1 26 44 20
21 39 8 33 2 27 45
46 15 40 9 34 3 28

.

  • Puede entenderse que el cuadrado de 1, no tiene 4 esquinas, y sin embargo su cifra mágica-2, es 4, al no poder sumar más que 1, queda fuera de ser un cuadrado mágico esotérico.
  • El cuadrado de dos, si tiene 4 esquinas, pero su cifra mágica-2 arroja un resultado de 10, lo cual es imposible que resulte. Se explica más arriba en este artículo, por qué un cuadrado mágico de n=2, no lo es (Cm no resulta), y aquí además porqué no es esotérico.

Propiedades del centro

En un cuadrado mágico esotérico también se cumple la siguiente condición (además de todo lo anteriormente explicado):

* En los casos impares: Obtenemos la Cifra Mágica-2 en los cuadrados mágicos esotéricos al multiplicar el valor central de la casilla por 4
* En el caso de los cuadrados pares: Obtenemos la Cifra Mágica-2 con la suma de sus 4 casillas centrales ( al igual que sucede con los centros en cruz explicados más arriba en que deben tomarse 2).

Es decir el 'peso específico' del centro se mantiene en equilibrio. Si quisiéramos usar una fórmula general sería esta: la media de las casillas centrales * 4. Dado que los casos impares no tiene una casilla central como única, debe considerarse el menor caso que reúna esa condición, siendo siempre 4 casillas.

Se puede comprobar con el ejemplo de 7 casillas de más arriba, o con el de 3, etc.


Propiedades posicionales

Por la que se considera a un cuadrado mágico esotérico que está ordenado cuando se cumplen además otras condiciones que son ligeramente distintas en los cuadrados de n-par sobre los de n-impar. (el mismo cuadrado rotado o reflejado, deja de ser ordenado aunque no deja de ser esotérico.

  1. n-impar: Nb ocupa la casila central. La cifra mayor está encima de la casilla central y la inferior debajo.La esquina r está ocupada por la cifra Nb-(n/2-(1/2)) y la opuesta u por lacifra Nb+(n/2-(1/2)). La esquina s está ocupada por la cifra n/2+(1/2) y la casilla opuesta t, por 2×Nb- (la cifra de s), o lo que es igual, por la cifra mayor del cuadrado mágico, - (n/2-(1/2)).
Diagonales: La diagonal que va desde la esquina superior izquierda hacia la esquina inferior derecha siempre lleva sus casillas numeradas correlativamente. La otra diagonal lleva sus casillas numeradas en saltos de n comenzando justamente por (n +1)/2
  1. n-par: La casilla r (la 1.ª), es ocupada por la cifra n, la cifra 1 ocupa la casilla s, y la última cifra, la diagonal t, y la casila u=t+s-r.Al ser par, no existe casilla central, y por lo mismo Nb, no es entero, y no ocupa casilla.
Diagonales: la 1.ª diagonal lleva las casillas numeradas en saltos de n -1 empezando por n y la otra diagonal lleva las casillas numeradas en saltos de n +1 empezando por 1 y acabando en .

Propiedades de las diagonales (diametrales)

Se verifica que la suma de dos casillas diametralmente opuestas siempre suman n² + 1. Se aplica por igual a los casos de n= impar como a los casos de n=par, siendo solo diferente, que para el caso impar el centro es una casilla y para el caso par no hay casilla definida

Para no saturar su comprobación se ilustran solo cuatro ejemplos denominados a, b, c, d con su correspondiente diametralmente opuesto respecto del centro (que se ha dejado a propósito).
Puede verificarse con los valores del cuadrado de la derecha. Siendo: DI= n² + 1= 7² + 1= 50 se demuestra que: para a DI= 47 + 3= 50, para b DI=42 + 8= 50, para c DI=6 + 44= 50, para d DI=31 + 19= 50...
- a - - - - 04
- - - - b 11 -
- c - - 18 - -
- d - 25 - d -
- - 32 - - c -
- 39 b - - - -
46 - - - - a -
22 47 16 41 10 35 4
5 23 48 17 42 11 29
30 6 24 49 18 36 12
13 31 7 25 43 19 37
38 14 32 1 26 44 20
21 39 8 33 2 27 45
46 15 40 9 34 3 28

Puede verse entonces que la propiedad de las esquinas es una consecuencia natural derivada de esta. Esta propiedad junto con las propiedades posicionales proporcionan todas las reglas necesarias para elaborar una fórmula general con la que elaborar cuadrados mágicos esotéricos de cualquier tamaño que se aborda un poco más abajo.


Alusiones a la cábala

  • Hay equivalencias entre las cifras de los cuadrados mágicos esotéricos y las letras del alfabeto hebreo, considerado por los cabalistas, de modo que solo cuando se aplica al cuadrado adecuado, puede tomarse correctamente el resultado cabalístico, siendo inexacto las conclusiones si se toma el cuadrado mágico equivocado.

Las reglas particulares, así como esta general, ha sido desconocida por muchos que a lo largo de los tiempos trataron de desentrañar sus misterios o de desenmascarar sus mentiras, es por ello que los estudios de aquellos que ignoraron tales cuestiones carecen de validez, pues la palabra tomaba el número de acuerdo a las reglas de este para interpretar la palabra, y no la palabra se convertía en número para interpretar la palabra, como tales pretendían. Así como las palabras tenían sus reglas, también las tenían los números, y era así como se convertía en sagrada su interpretación, pues no bastaba con conocer los números si no se conocían sus reglas, igual que no basta para comprender un idioma, aunque se conozcan sus letras, si se desconocen sus reglas....

  • Es de señalar que sin embargo, a pesar de lo indicado más arriba en el artículo, los mencionados como cuadrados satánicos, estrictamente en sentido esotérico, no son tenidos por tales si no tan solo el cuadrado de lado 6 esotérico, ya que la suma de sus cifras (Composición), suma 666. Y es en donde los cabalistas buscan o debieran buscar el número de la Bestia tal como se menciona en la Biblia.

Elaborar cuadrados mágicos esotéricos

  • El proceso de elaborar cuadrados mágicos esotéricos se aborda en 2 fases. como se ha venido viendo a lo largo del artículo, los casos de n par o impar conllevan situaciones que requieren diferente trato.
  • De entrada y por abreviar acordamos llamar a cada diagonal con los siguientes símbolos: diagonal directa (arriba izquierda hacia abajo derecha) con lo llamaremos d \. Diagonal inversa (arriba derecha hacia abajo izquierda) lo llamaremos d /
  • Lista de figuras: para reconocer mejor el cambio operado en cada paso se ha despejado el cuadrado de todo lo no necesario para entender el paso, por dicha razón a cada paso no necesariamente se va acumulando los valores ya obtenidos.

Caso impar

Para explicar cómo elaborar un cuadrado mágico esotérico de lado impar, previamente decidimos n que para el ejemplo será 9

Siendo n=9 calculamos el n.º de casillas n²=9*9=81 y a su vez calculamos NB con cualquiera de las fórmulas que se dieron anteriormente, al caso NB = (n²+1) /2=41. NB no precisa ser calculado en este instante, sin embargo sirve de verificación para constatar que se trata de un cuadrado mágico esotérico y no de otro cualquiera.
FI GU RA AA AA AA AA AA 01
- - - - - - - - -
- - - - - - - - -
- - - - - - - - -
- - - - 81 - - - -
- - - - 41 - - - -
- - - - 1 - - - -
- - - - - - - - -
- - - - - - - - -
- - - - - - - - -
FI GU RA AA AA AA AA AA 02
- - - - - - - - 5
- - - - - - - 14 -
- - - - - - 23 - -
- - - - 32 - - -
- - - - 41 - - - -
- - - 50 - - - -
- - 59 - - - - - -
- 68 - - - - - - -
77 - - - - - - - -
  • Se muestra el cuadrado vacío y donde irán los valores 1, NB y como se indica en propiedades posicionales más arriba en el artículo. (ver figura-1 ). Se hace notar la importancia estratégica de NB, que se emplea en el paso-3
  • Paso 1: elaborar la diagonal principal; d / como se indica en propiedades posicionales: calculamos la primera cifra: = (n + 1) /2 = 9 +1 /2=5 primer valor por tanto 5, los siguientes serán ((nº fila-1) * n) + valor 1ª fila caso de la fila 2= ((2-1) * 9) +5=14, sucesivamente aplicando el mismo cálculo serán: 23,32,41,50,59,68 y 77 (ver figura-2).

En la imagen (figura-8) 1.ª a la derecha de la figura 7 se muestra un método rápido de rellenar ambas diagonales sin necesidad de calcular.

FI GU RA AA AA AA AA AA 03
- - - - - - - - 5
- - - - - - - 14 -
- - - - - - 23 - -
- - - - 32 - - -
- - - - 41 - - - -
- - - 50 42 - - -
- - 59 - - - 43 - -
- 68 - - - - - 44 -
77 - - - - - - - 45
FI GU RA AA AA AA AA AA 04
* - - - - 5
- 38 - - - 14 -
- 39 - - 23 -
- - 40 32 - -
- - 41 - -
- - 50 42 - -
- 59 - 51 - 43 -
- 68 - 60 - 52 - 44 -
77 - 69 - 61 - 53 - 45
  • Paso 2: elaborar las diagonales respecto de la principal; todas las d \ que desembocan a d / tiene valores correlativos por consiguiente, empezando por la casilla central hacia abajo serán: 42,43,44,45 (figura-3) y hacia arriba serán: 40,39,38,37... proceder igualmente desde el resto de las casillas que forman d /. Con esto ya tenemos resuelto la mitad del cuadrado, todas las casillas impares... (figura-4). Para no enturbiar la figura-4 se rellenan solo unas pocas casillas y se marcan los demás afectados con el mismo color de fondo que estos...

Puede verse en la imagen (figura-9) (la 2.ª a la derecha de la figura-7, más abajo), cuáles casillas son estas, tomadas del cuadrado original del que se toman los valores, y que al caso son correlativos. Obsérvese el giro a 45° de la imagen para ver la concordancia claramente. La imagen ilustra la no necesidad de calcular dichas casillas. Por ejemplo para la primera fila se ve que estas son: 37 - 29 - 21 - 13 y 5.

FI GU RA AA AA AA AA AA 05
37 - 29 - 21 - 13 - 5
- 38 - 30 - 22 - 14 -
47 - 39 - 31 - 23 - 15
- 48 - 40 32 - 24 -
57 - 49 - 41 - 33 - 25
- 58 - 50 42 - 34 -
67 - 59 - 51 - 43 - 35
- 68 - 60 - 52 - 44 -
77 - 69 - 61 - 53 - 45
FI GU RA AA AA AA AA AA 06
- 29 70 - -
- - - - -
- - - -
- - - -
17 41 -
- 58 - - 34 -
- 10 51 - 75
- - - - -
- - - -
  • Paso 3: Desde este momento hay que considerar el cuadrado en 4 zonas, primero en 2 separadas por d / y nuevamente dividimos cada zona en 2 de acuerdo a d \ (ver figura-5 donde pintamos cada área de un color (solo las casilla que faltan por resolver)). Cada una de las 4 zonas delimitadas se resuelve con suma o resta de un valor ya existente en la casilla adhyacente operando con NB, siendo condicionado cada zona al siguiente criterio; El valor de cada casilla resulta de operar la casilla inmediata al lado:
  • En la zona norte, izquierda + NB
  • En la zona sur, derecha - NB
  • En la zona oeste, inferior - NB
  • En la zona este, superior + NB. Esto es, una casilla en la zona este se calcula sumando el valor de la que está encima de esta + NB.

En última imagen (tercera a la derecha de la figura-7) se muestra de donde proceden estas casillas en el cuadrado original, y como se ubican en cada sector. Compárese cada sector con la ubicación de la figura-9. Puede verse como los sectores han sido trasladados. Todas las casillas corresponden a las que se muestran en la figura-7 en color amarillo.

Se ha calculado solo una casilla en cada zona (ver figura-6), para apreciar con más claridad cada caso, analicemos por ejemplo la de la zona este. Tomemos (ver figura-5) la casilla situada entre aquella que tiene el valor 34 y la que tiene valor 44, valdrá, lo que vale la casilla según se indica por la zona a que corresponde, este caso la de encima de ella + NB= 34 + 41=75 ( ver resultado en figura-6 y comprobar con figura-7).

La figura-7 muestra el cuadrado completamente relleno y de un mismo color las casilas obtenidas en cada paso. Corresponde a cada paso los siguientes colores: paso 1: marrón, paso 2: arena, paso 3: amarillo. A la derecha se muestra una imagen donde se relacionan las casillas que corresponden a las diagonales sin necesidad de calcular, nótese que el cuadrado de la imagen (figura 8) tiene todas sus casillas correlativamente numeradas del 1 al 81.

FI GU RA AA AA AA AA AA 07
37 78 29 70 21 62 13 54 5
6 38 79 30 71 22 63 14 46
47 7 39 80 31 72 23 55 15
16 48 8 40 81 32 64 24 56
57 17 49 9 41 73 33 65 25
26 58 18 50 1 42 74 34 66
67 27 59 10 51 2 43 75 35
36 68 19 60 11 52 3 44 76
77 28 69 20 61 12 53 4 45
Rellenar las diagonales sin calcular
Rellenar casillas diagonales respecto de la diagonal principal
Rellenar las casillas del paso 3 sin calcular

Caso par

  • Los métodos explicados detalladamente valen para cualquiera que sea el número de n, que por razones de espacio se ha trabajado con ejemplos cuyo n resulta fácilmente manejable.
  • Cuando ya se conocen las reglas pueden construirse siguiendo otro criterio basándose en la relación que mantienen entre sí las casillas. Con todo se recomienda seguir las instrucciones cuando se hace manualmente.
  • Una vez realizado un cuadrado mágico esotérico puede fácilmente mudarse en cualquier otro tipo de cuadrado mágico simplemente por sustitución, adición, giro o cualquier otro método.
  • En el Fausto (Goethe), el sortilegio de la bruja para hacer el elixir de la juventud para Fausto ha sido interpretado como la construcción de un cuadrado mágico.
  • Un episodio de la primera temporada de Stargate Atlantis involucra completar un cuadrado mágico como parte de un acertijo para acceder a un poderoso amuleto antiguo.
  • La novela Los Siete Padres de Kimera incluye dos cuadrados mágicos originales, además de hacer referencia al cuadrado de Alberto Durero. En uno de ellos, de 5x5, las diagonales quebradas tienen la suma mágica (es pandiagonal) y además el número áureo aparece aproximadamente en varias relaciones. El otro, de 6x6, además de incluir números relacionados con la trama del libro, sirve para resolver un acertijo en el apéndice.[7]

Referencias

  1. Luis Ferrero de Pablo (2010). Jaque a las matemáticas. Editorial La Muralla. pp. 22 de 152. ISBN 9788471337924. Consultado el 4 de julio de 2022. 
  2. Sergio Chagas (2005). Feng Shui, El Camino Para Impulsar Cambios Positivos. Editorial Kier. pp. 43 de 158. ISBN 9789501770155. Consultado el 4 de julio de 2022. 
  3. [1]
  4. a b Tony Crilly (2011). 50 cosas que hay que saber sobre matemáticas. Ed. Ariel. ISBN 978-987-1496-09-9. 
  5. Letters: The Mathematical Intelligencer; 2003; 25; 4: pp. 6–7.
  6. «Oficina de correos de Macao». Archivado desde el original el 25 de marzo de 2016. Consultado el 5 de noviembre de 2017. 
  7. Jorge Alcoz (2017). Los Siete Padres de Kimera. Ed. Ombú. ISBN 978-1-365-97064-1. 

Bibliografía

  • Andrews, William Symes: Magic Squares and Cubes. Nueva York: Dover, 1960. ISBN 0-486-20658-0
  • Fults, John Lee: Magic Squares. La Salle, Illinois: Open Court, 1974. ISBN 0-87548-197-3
  • Pickover, Clifford: The Zen of Magic Squares, Circles, and Stars. Princeton, Nueva Jersey: Princeton University Press, 2003. ISBN 0-691-11597-4
  • Knorr Rosenroth: Aesch Mezareph o Fuego Purificador, original: Sulzbach año-1677-84, presente edición en español: Muñoz Moya y Montraveta editores, Cerdanyola del Valles, año-1987, ISBN 84-86335-32-9
  • Cornelio Agrippa: Numerología Oculta, Ediciones Obelisco año-1996 ISBN 978-84-7720-493-0
  • Charles D. Miller, Vern E. Heeren, John Hornsby. Décima edición, 2006. Matemática: razonamiento y aplicaciones. Ed. Pearson

Enlaces externos

Véase también

Kembali kehalaman sebelumnya