Strong prime
In mathematics, a strong prime is a prime number with certain special properties. The definitions of strong primes are different in cryptography and number theory. Definition in number theoryIn number theory, a strong prime is a prime number that is greater than the arithmetic mean of the nearest prime above and below (in other words, it is closer to the following than to the preceding prime). Or to put it algebraically, writing the sequence of prime numbers as (p1, p2, p3, ...) = (2, 3, 5, ...), pn is a strong prime if pn > pn − 1 + pn + 1/2. For example, 17 is the seventh prime: the sixth and eighth primes, 13 and 19, add up to 32, and half that is 16; 17 is greater than 16, so 17 is a strong prime. The first few strong primes are
In a twin prime pair (p, p + 2) with p > 5, p is always a strong prime, since 3 must divide p − 2, which cannot be prime.
Definition in cryptographyIn cryptography, a prime number p is said to be "strong" if the following conditions are satisfied.[1]
Application of strong primes in cryptographyFactoring-based cryptosystemsSome people suggest that in the key generation process in RSA cryptosystems, the modulus n should be chosen as the product of two strong primes. This makes the factorization of n = pq using Pollard's p − 1 algorithm computationally infeasible. For this reason, strong primes are required by the ANSI X9.31 standard for use in generating RSA keys for digital signatures. However, strong primes do not protect against modulus factorisation using newer algorithms such as Lenstra elliptic curve factorization and Number Field Sieve algorithm. Given the additional cost of generating strong primes RSA Security do not currently recommend their use in key generation. Similar (and more technical) argument is also given by Rivest and Silverman.[1] Discrete-logarithm-based cryptosystemsIt is shown by Stephen Pohlig and Martin Hellman in 1978 that if all the factors of p − 1 are less than logc p, then the problem of solving discrete logarithm modulo p is in P. Therefore, for cryptosystems based on discrete logarithm, such as DSA, it is required that p − 1 have at least one large prime factor. Miscellaneous factsA computationally large safe prime is likely to be a cryptographically strong prime. Note that the criteria for determining if a pseudoprime is a strong pseudoprime is by congruences to powers of a base, not by inequality to the arithmetic mean of neighboring pseudoprimes. When a prime is equal to the mean of its neighboring primes, it is called a balanced prime. When it is less, it is called a weak prime (not to be confused with a weakly prime number). References
External links
|