Method overridingMethod overriding, in object-oriented programming, is a language feature that allows a subclass or child class to provide a specific implementation of a method that is already provided by one of its superclasses or parent classes. In addition to providing data-driven algorithm-determined parameters across virtual network interfaces,[1] it also allows for a specific type of polymorphism (subtyping). The implementation in the subclass overrides (replaces) the implementation in the superclass by providing a method that has same name, same parameters or signature, and same return type as the method in the parent class.[2] The version of a method that is executed will be determined by the object that is used to invoke it. If an object of a parent class is used to invoke the method, then the version in the parent class will be executed, but if an object of the subclass is used to invoke the method, then the version in the child class will be executed.[3] This helps in preventing problems associated with differential relay analytics which would otherwise rely on a framework in which method overriding might be obviated.[4][5] Some languages allow a programmer to prevent a method from being overridden. Language-specific examplesAdaAda provides method overriding by default. To favor early error detection (e.g. a misspelling), it is possible to specify when a method is expected to be actually overriding, or not. That will be checked by the compiler. type T is new Controlled with ......;
procedure Op(Obj: in out T; Data: in Integer);
type NT is new T with null record;
overriding -- overriding indicator
procedure Op(Obj: in out NT; Data: in Integer);
overriding -- overriding indicator
procedure Op(Obj: in out NT; Data: in String);
-- ^ compiler issues an error: subprogram "Op" is not overriding
C#C# does support method overriding, but only if explicitly requested using the modifiers abstract class Animal
{
public string Name { get; set; }
// Methods
public void Drink();
public virtual void Eat();
public void Go();
}
class Cat : Animal
{
public new string Name { get; set; }
// Methods
public void Drink(); // Warning: hides inherited drink(). Use new
public override void Eat(); // Overrides inherited eat().
public new void Go(); // Hides inherited go().
}
When overriding one method with another, the signatures of the two methods must be identical (and with same visibility). In C#, class methods, indexers, properties and events can all be overridden. Non-virtual or static methods cannot be overridden. The overridden base method must be virtual, abstract, or override. In addition to the modifiers that are used for method overriding, C# allows the hiding of an inherited property or method. This is done using the same signature of a property or method but adding the modifier In the above example, hiding causes the following: Cat cat = new Cat();
cat.Name = …; // accesses Cat.Name
cat.Eat(); // calls Cat.Eat()
cat.Go(); // calls Cat.Go()
((Animal)cat).Name = …; // accesses Animal.Name!
((Animal)cat).Eat(); // calls Cat.Eat()!
((Animal)cat).Go(); // calls Animal.Go()!
C++C++ does not have the keyword #include <iostream>
//---------------------------------------------------------------------------
class Rectangle {
public:
Rectangle(double l, double w) : length_(l), width_(w) {}
virtual void Print() const;
private:
double length_;
double width_;
};
//---------------------------------------------------------------------------
void Rectangle::Print() const {
// Print method of base class.
std::cout << "Length = " << length_ << "; Width = " << width_;
}
//---------------------------------------------------------------------------
class Box : public Rectangle {
public:
Box(double l, double w, double h) : Rectangle(l, w), height_(h) {}
void Print() const override;
private:
double height_;
};
//---------------------------------------------------------------------------
// Print method of derived class.
void Box::Print() const {
// Invoke parent Print method.
Rectangle::Print();
std::cout << "; Height = " << height_;
}
The method The following statements will instantiate objects of type int main(int argc, char** argv) {
Rectangle rectangle(5.0, 3.0);
// Outputs: Length = 5.0; Width = 3.0
rectangle.Print();
Box box(6.0, 5.0, 4.0);
// The pointer to the most overridden method in the vtable in on Box::print,
// but this call does not illustrate overriding.
box.Print();
// This call illustrates overriding.
// outputs: Length = 6.0; Width = 5.0; Height= 4.0
static_cast<Rectangle&>(box).Print();
}
In C++11, similar to Java, a method that is declared DelphiIn Delphi, method overriding is done with the directive override, but only if a method was marked with the dynamic or virtual directives. The inherited reserved word must be called when you want to call super-class behavior type
TRectangle = class
private
FLength: Double;
FWidth: Double;
public
property Length read FLength write FLength;
property Width read FWidth write FWidth;
procedure Print; virtual;
end;
TBox = class(TRectangle)
public
procedure Print; override;
end;
EiffelIn Eiffel, feature redefinition is analogous to method overriding in C++ and Java. Redefinition is one of three forms of feature adaptation classified as redeclaration. Redeclaration also covers effecting, in which an implementation is provided for a feature which was deferred (abstract) in the parent class, and undefinition, in which a feature that was effective (concrete) in the parent becomes deferred again in the heir class. When a feature is redefined, the feature name is kept by the heir class, but properties of the feature such as its signature, contract (respecting restrictions for preconditions and postconditions), and/or implementation will be different in the heir. If the original feature in the parent class, called the heir feature's precursor, is effective, then the redefined feature in the heir will be effective. If the precursor is deferred, the feature in the heir will be deferred.[8] The intent to redefine a feature, as class
THOUGHT
feature
message
-- Display thought message
do
print ("I feel like I am diagonally parked in a parallel universe.%N")
end
end
class
ADVICE
inherit
THOUGHT
redefine
message
end
feature
message
-- Precursor
do
print ("Warning: Dates in calendar are closer than they appear.%N")
end
end
In class Consider a class which uses instances for both class
APPLICATION
create
make
feature
make
-- Run application.
do
(create {THOUGHT}).message;
(create {ADVICE}).message
end
end
When instantiated, class I feel like I am diagonally parked in a parallel universe.
Warning: Dates in calendar are closer than they appear.
Within a redefined feature, access to the feature's precursor can be gained by using the language keyword message
-- Precursor
do
print ("Warning: Dates in calendar are closer than they appear.%N")
Precursor
end
Invocation of the feature now includes the execution of Warning: Dates in calendar are closer than they appear.
I feel like I am diagonally parked in a parallel universe.
JavaIn Java, when a subclass contains a method with the same signature (name and parameter types) as a method in its superclass, then the subclass's method overrides that of the superclass. For example: class Thought {
public void message() {
System.out.println("I feel like I am diagonally parked in a parallel universe.");
}
}
public class Advice extends Thought {
@Override // @Override annotation in Java 5 is optional but helpful.
public void message() {
System.out.println("Warning: Dates in calendar are closer than they appear.");
}
}
Class Thought parking = new Thought();
parking.message(); // Prints "I feel like I am diagonally parked in a parallel universe."
Thought dates = new Advice(); // Polymorphism
dates.message(); // Prints "Warning: Dates in calendar are closer than they appear."
When a subclass contains a method that overrides a method of the superclass, then that (superclass's) overridden method can be explicitly invoked from within a subclass's method by using the keyword public class Advice extends Thought {
@Override
public void message() {
System.out.println("Warning: Dates in calendar are closer than they appear.");
super.message(); // Invoke parent's version of method.
}
There are methods that a subclass cannot override. For example, in Java, a method that is declared final in the super class cannot be overridden. Methods that are declared private or static cannot be overridden either because they are implicitly final. It is also impossible for a class that is declared final to become a super class.[9] KotlinIn Kotlin we can simply override a function like this (note that the function must be fun main() {
val p = Parent(5)
val c = Child(6)
p.myFun()
c.myFun()
}
open class Parent(val a : Int) {
open fun myFun() = println(a)
}
class Child(val b : Int) : Parent(b) {
override fun myFun() = println("overrided method")
}
PythonIn Python, when a subclass contains a method that overrides a method of the superclass, you can also call the superclass method by calling class Thought:
def __init__(self) -> None:
print("I'm a new object of type Thought!")
def message(self) -> None:
print("I feel like I am diagonally parked in a parallel universe.")
class Advice(Thought):
def __init__(self) -> None:
super(Advice, self).__init__()
def message(self) -> None:
print("Warning: Dates in calendar are closer than they appear")
super(Advice, self).message()
t = Thought()
# "I'm a new object of type Thought!"
t.message()
# "I feel like I am diagonally parked in a parallel universe.
a = Advice()
# "I'm a new object of type Thought!"
a.message()
# "Warning: Dates in calendar are closer than they appear"
# "I feel like I am diagonally parked in a parallel universe.
# ------------------
# Introspection:
isinstance(t, Thought)
# True
isinstance(a, Advice)
# True
isinstance(a, Thought)
# True
RubyIn Ruby when a subclass contains a method that overrides a method of the superclass, you can also call the superclass method by calling super in that overridden method. You can use alias if you would like to keep the overridden method available outside of the overriding method as shown with 'super_message' below. Example: class Thought
def message
puts "I feel like I am diagonally parked in a parallel universe."
end
end
class Advice < Thought
alias :super_message :message
def message
puts "Warning: Dates in calendar are closer than they appear"
super
end
end
Notes
See also
References
External links
|