The Joback method[1] (often named Joback/Reid method) predicts eleven important and commonly used pure component thermodynamic properties from molecular structure only.
Basic principles
Group-contribution method
The Joback method is a group-contribution method. These kinds of methods use basic structural information of a chemical molecule, like a list of simple functional groups, add parameters to these functional groups, and calculate thermophysical and transport properties as a function of the sum of group parameters.
Joback assumes that there are no interactions between the groups, and therefore only uses additive contributions and no contributions for interactions between groups. Other group-contribution methods, especially methods like UNIFAC, which estimate mixture properties like activity coefficients, use both simple additive group parameters and group-interaction parameters. The big advantage of using only simple group parameters is the small number of needed parameters. The number of needed group-interaction parameters gets very high for an increasing number of groups (1 for two groups, 3 for three groups, 6 for four groups, 45 for ten groups and twice as much if the interactions are not symmetric).
Nine of the properties are single temperature-independent values, mostly estimated by a simple sum of group contribution plus an addend.
Two of the estimated properties are temperature-dependent: the ideal-gas heat capacity and the dynamic viscosity of liquids. The heat-capacity polynomial uses 4 parameters, and the viscosity equation only 2. In both cases the equation parameters are calculated by group contributions.
History
The Joback method is an extension of the Lydersen method[2] and uses very similar groups, formulas, and parameters for the three properties the Lydersen already supported (critical temperature, critical pressure, critical volume).
Joback extended the range of supported properties, created new parameters and modified slightly the formulas of the old Lydersen method.
Model strengths and weaknesses
Strengths
The popularity and success of the Joback method mainly originates from the single group list for all properties. This allows one to get all eleven supported properties from a single analysis of the molecular structure.
The Joback method additionally uses a very simple and easy to assign group scheme, which makes the method usable for people with only basic chemical knowledge.
Weaknesses
Newer developments of estimation methods[3][4] have shown that the quality of the Joback method is limited. The original authors already stated themselves in the original article abstract: "High accuracy is not claimed, but the proposed methods are often as or more accurate than techniques in common use today."
The list of groups does not cover many common molecules sufficiently. Especially aromatic compounds are not differentiated from normal ring-containing components. This is a severe problem because aromatic and aliphatic components differ strongly.
The data base Joback and Reid used for obtaining the group parameters was rather small and covered only a limited number of different molecules. The best coverage has been achieved for normal boiling points (438 components), and the worst for heats of fusion (155 components). Current developments that can use data banks, like the Dortmund Data Bank or the DIPPR data base, have a much broader coverage.
The formula used for the prediction of the normal boiling point shows another problem. Joback assumed a constant contribution of added groups in homologous series like the alkanes. This doesn't describe the real behavior of the normal boiling points correctly.[5] Instead of the constant contribution, a decrease of the contribution with increasing number of groups must be applied. The chosen formula of the Joback method leads to high deviations for large and small molecules and an acceptable good estimation only for mid-sized components.
Formulas
In the following formulas Gi denotes a group contribution. Gi are counted for every single available group. If a group is present multiple times, each occurrence is counted separately.
Normal boiling point
Melting point
Critical temperature
This critical-temperature equation needs a normal boiling point Tb. If an experimental value is available, it is recommended to use this boiling point. It is, on the other hand, also possible to input the normal boiling point estimated by the Joback method. This will lead to a higher error.
Critical pressure
where Na is the number of atoms in the molecular structure (including hydrogens).
Critical volume
Heat of formation (ideal gas, 298 K)
Gibbs energy of formation (ideal gas, 298 K)
Heat capacity (ideal gas)
The Joback method uses a four-parameter polynomial to describe the temperature dependency of the ideal-gas heat capacity. These parameters are valid from 273 K to about 1000 K. But you are able to extend it to 1500K if you don't mind a bit of uncertainty here and there.
The method uses a two-parameter equation to describe the temperature dependency of the dynamic viscosity. The authors state that the parameters are valid from the melting temperature up to 0.7 of the critical temperature (Tr < 0.7).
Group contributions
Group
Tc
Pc
Vc
Tb
Tm
Hform
Gform
a
b
c
d
Hfusion
Hvap
ηa
ηb
Critical-state data
Temperatures of phase transitions
Chemical caloric properties
Ideal-gas heat capacities
Enthalpies of phase transitions
Dynamic viscosity
Non-ring groups
−CH3
0.0141
−0.0012
65
23.58
−5.10
−76.45
−43.96
1.95E+1
−8.08E−3
1.53E−4
−9.67E−8
0.908
2.373
548.29
−1.719
−CH2−
0.0189
0.0000
56
22.88
11.27
−20.64
8.42
−9.09E−1
9.50E−2
−5.44E−5
1.19E−8
2.590
2.226
94.16
−0.199
>CH−
0.0164
0.0020
41
21.74
12.64
29.89
58.36
−2.30E+1
2.04E−1
−2.65E−4
1.20E−7
0.749
1.691
−322.15
1.187
>C<
0.0067
0.0043
27
18.25
46.43
82.23
116.02
−6.62E+1
4.27E−1
−6.41E−4
3.01E−7
−1.460
0.636
−573.56
2.307
=CH2
0.0113
−0.0028
56
18.18
−4.32
−9.630
3.77
2.36E+1
−3.81E−2
1.72E−4
−1.03E−7
−0.473
1.724
495.01
−1.539
=CH−
0.0129
−0.0006
46
24.96
8.73
37.97
48.53
−8.00
1.05E−1
−9.63E−5
3.56E−8
2.691
2.205
82.28
−0.242
=C<
0.0117
0.0011
38
24.14
11.14
83.99
92.36
−2.81E+1
2.08E−1
−3.06E−4
1.46E−7
3.063
2.138
n. a.
n. a.
=C=
0.0026
0.0028
36
26.15
17.78
142.14
136.70
2.74E+1
−5.57E−2
1.01E−4
−5.02E−8
4.720
2.661
n. a.
n. a.
≡CH
0.0027
−0.0008
46
9.20
−11.18
79.30
77.71
2.45E+1
−2.71E−2
1.11E−4
−6.78E−8
2.322
1.155
n. a.
n. a.
≡C−
0.0020
0.0016
37
27.38
64.32
115.51
109.82
7.87
2.01E−2
−8.33E−6
1.39E-9
4.151
3.302
n. a.
n. a.
Ring groups
−CH2−
0.0100
0.0025
48
27.15
7.75
−26.80
−3.68
−6.03
8.54E−2
−8.00E−6
−1.80E−8
0.490
2.398
307.53
−0.798
>CH−
0.0122
0.0004
38
21.78
19.88
8.67
40.99
−2.05E+1
1.62E−1
−1.60E−4
6.24E−8
3.243
1.942
−394.29
1.251
>C<
0.0042
0.0061
27
21.32
60.15
79.72
87.88
−9.09E+1
5.57E−1
−9.00E−4
4.69E−7
−1.373
0.644
n. a.
n. a.
=CH−
0.0082
0.0011
41
26.73
8.13
2.09
11.30
−2.14
5.74E−2
−1.64E−6
−1.59E−8
1.101
2.544
259.65
−0.702
=C<
0.0143
0.0008
32
31.01
37.02
46.43
54.05
−8.25
1.01E−1
−1.42E−4
6.78E−8
2.394
3.059
-245.74
0.912
Halogen groups
−F
0.0111
−0.0057
27
−0.03
−15.78
−251.92
−247.19
2.65E+1
−9.13E−2
1.91E−4
−1.03E−7
1.398
−0.670
n. a.
n. a.
−Cl
0.0105
−0.0049
58
38.13
13.55
−71.55
−64.31
3.33E+1
−9.63E−2
1.87E−4
−9.96E−8
2.515
4.532
625.45
−1.814
−Br
0.0133
0.0057
71
66.86
43.43
−29.48
−38.06
2.86E+1
−6.49E−2
1.36E−4
−7.45E−8
3.603
6.582
738.91
−2.038
−I
0.0068
−0.0034
97
93.84
41.69
21.06
5.74
3.21E+1
−6.41E−2
1.26E−4
−6.87E−8
2.724
9.520
809.55
−2.224
Oxygen groups
−OH (alcohol)
0.0741
0.0112
28
92.88
44.45
−208.04
−189.20
2.57E+1
−6.91E−2
1.77E−4
−9.88E−8
2.406
16.826
2173.72
−5.057
−OH (phenol)
0.0240
0.0184
−25
76.34
82.83
−221.65
−197.37
−2.81
1.11E−1
−1.16E−4
4.94E−8
4.490
12.499
3018.17
−7.314
−O− (non-ring)
0.0168
0.0015
18
22.42
22.23
−132.22
−105.00
2.55E+1
−6.32E−2
1.11E−4
−5.48E−8
1.188
2.410
122.09
−0.386
−O− (ring)
0.0098
0.0048
13
31.22
23.05
−138.16
−98.22
1.22E+1
−1.26E−2
6.03E−5
−3.86E−8
5.879
4.682
440.24
−0.953
>C=O (non-ring)
0.0380
0.0031
62
76.75
61.20
−133.22
−120.50
6.45
6.70E−2
−3.57E−5
2.86E−9
4.189
8.972
340.35
−0.350
>C=O (ring)
0.0284
0.0028
55
94.97
75.97
−164.50
−126.27
3.04E+1
−8.29E−2
2.36E−4
−1.31E−7
0.
6.645
n. a.
n. a.
O=CH− (aldehyde)
0.0379
0.0030
82
72.24
36.90
−162.03
−143.48
3.09E+1
−3.36E−2
1.60E−4
−9.88E−8
3.197
9.093
740.92
−1.713
−COOH (acid)
0.0791
0.0077
89
169.09
155.50
−426.72
−387.87
2.41E+1
4.27E−2
8.04E−5
−6.87E−8
11.051
19.537
1317.23
−2.578
−COO− (ester)
0.0481
0.0005
82
81.10
53.60
−337.92
−301.95
2.45E+1
4.02E−2
4.02E−5
−4.52E−8
6.959
9.633
483.88
−0.966
=O (other than above)
0.0143
0.0101
36
−10.50
2.08
−247.61
−250.83
6.82
1.96E−2
1.27E−5
−1.78E−8
3.624
5.909
675.24
−1.340
Nitrogen groups
−NH2
0.0243
0.0109
38
73.23
66.89
−22.02
14.07
2.69E+1
−4.12E−2
1.64E−4
−9.76E−8
3.515
10.788
n. a.
n. a.
>NH (non-ring)
0.0295
0.0077
35
50.17
52.66
53.47
89.39
−1.21
7.62E−2
−4.86E−5
1.05E−8
5.099
6.436
n. a.
n. a.
>NH (ring)
0.0130
0.0114
29
52.82
101.51
31.65
75.61
1.18E+1
−2.30E−2
1.07E−4
−6.28E−8
7.490
6.930
n. a.
n. a.
>N− (non-ring)
0.0169
0.0074
9
11.74
48.84
123.34
163.16
−3.11E+1
2.27E−1
−3.20E−4
1.46E−7
4.703
1.896
n. a.
n. a.
−N= (non-ring)
0.0255
-0.0099
n. a.
74.60
n. a.
23.61
n. a.
n. a.
n. a.
n. a.
n. a.
n. a.
3.335
n. a.
n. a.
−N= (ring)
0.0085
0.0076
34
57.55
68.40
55.52
79.93
8.83
−3.84E-3
4.35E−5
−2.60E−8
3.649
6.528
n. a.
n. a.
=NH
n. a.
n. a.
n. a.
83.08
68.91
93.70
119.66
5.69
−4.12E−3
1.28E−4
−8.88E−8
n. a.
12.169
n. a.
n. a.
−CN
0.0496
−0.0101
91
125.66
59.89
88.43
89.22
3.65E+1
−7.33E−2
1.84E−4
−1.03E−7
2.414
12.851
n. a.
n. a.
−NO2
0.0437
0.0064
91
152.54
127.24
−66.57
−16.83
2.59E+1
−3.74E−3
1.29E−4
−8.88E−8
9.679
16.738
n. a.
n. a.
Sulfur groups
−SH
0.0031
0.0084
63
63.56
20.09
−17.33
−22.99
3.53E+1
−7.58E−2
1.85E−4
−1.03E−7
2.360
6.884
n. a.
n. a.
−S− (non-ring)
0.0119
0.0049
54
68.78
34.40
41.87
33.12
1.96E+1
−5.61E−3
4.02E−5
−2.76E−8
4.130
6.817
n. a.
n. a.
−S− (ring)
0.0019
0.0051
38
52.10
79.93
39.10
27.76
1.67E+1
4.81E−3
2.77E−5
−2.11E−8
1.557
5.984
n. a.
n. a.
Example calculation
Acetone (propanone) is the simplest ketone and is separated into three groups in the Joback method: two methyl groups (−CH3) and one ketone group (C=O). Since the methyl group is present twice, its contributions have to be added twice.
−CH3
>C=O (non-ring)
Property
No. of groups
Group value
No. of groups
Group value
Estimated value
Unit
Tc
2
0.0141
1
0.0380
0.0662
500.5590
K
Pc
2
−1.20E−03
1
3.10E−03
7.00E−04
48.0250
bar
Vc
2
65.0000
1
62.0000
192.0000
209.5000
mL/mol
Tb
2
23.5800
1
76.7500
123.9100
322.1100
K
Tm
2
−5.1000
1
61.2000
51.0000
173.5000
K
Hformation
2
−76.4500
1
−133.2200
−286.1200
−217.8300
kJ/mol
Gformation
2
−43.9600
1
−120.5000
−208.4200
−154.5400
kJ/mol
Cp: a
2
1.95E+01
1
6.45E+00
4.55E+01
Cp: b
2
−8.08E−03
1
6.70E−02
5.08E−02
Cp: c
2
1.53E−04
1
−3.57E−05
2.70E−04
Cp: d
2
−9.67E−08
1
2.86E−09
−1.91E−07
Cp
at T = 300 K
75.3264
J/(mol·K)
Hfusion
2
0.9080
1
4.1890
6.0050
5.1250
kJ/mol
Hvap
2
2.3730
1
8.9720
13.7180
29.0180
kJ/mol
ηa
2
548.2900
1
340.3500
1436.9300
ηb
2
−1.7190
1
−0.3500
−3.7880
η
at T = 300 K
0.0002942
Pa·s
References
^Joback K. G., Reid R. C., "Estimation of Pure-Component Properties from Group-Contributions", Chem. Eng. Commun., 57, 233–243, 1987.
^Lydersen A. L., "Estimation of Critical Properties of Organic Compounds", University of Wisconsin College Engineering, Eng. Exp. Stn. Rep. 3, Madison, Wisconsin, 1955.
^Constantinou L., Gani R., "New Group Contribution Method for Estimating Properties of Pure Compounds", AIChE J., 40(10), 1697–1710, 1994.
^Nannoolal Y., Rarey J., Ramjugernath J., "Estimation of pure component properties Part 2. Estimation of critical property data by group contribution", Fluid Phase Equilib., 252(1–2), 1–27, 2007.
^Stein S. E., Brown R. L., "Estimation of Normal Boiling Points from Group Contributions", J. Chem. Inf. Comput. Sci. 34, 581–587 (1994).