Notable members of Homo. Clockwise from top left: A reconstructed Neanderthal (Homo neanderthalensis) skeleton, a modern human (Homo sapiens) female with a child in India, a reconstructed Homo habilis skull, and a replica skull of Peking Man (subspecies of Homo erectus).
Homo (from Latinhomō 'human') is a genus of great ape (family Hominidae) that emerged from the genus Australopithecus and encompasses only a single extant species, Homo sapiens (modern humans), along with a number of extinct species (collectively called archaic humans) classified as either ancestral or closely related to modern humans; these include Homo erectus and Homo neanderthalensis. The oldest member of the genus is Homo habilis, with records of just over 2 million years ago.[a]Homo, together with the genus Paranthropus, is probably most closely related to the species Australopithecus africanus within Australopithecus.[4] The closest living relatives of Homo are of the genus Pan (chimpanzees and bonobos), with the ancestors of Pan and Homo estimated to have diverged around 5.7-11 million years ago during the Late Miocene.[5]
H. erectus appeared about 2 million years ago and spread throughout Africa (debatably as another species called Homo ergaster) and Eurasia in several migrations. The species was adaptive and successful, and persisted for more than a million years before gradually diverging into new species around 500,000 years ago.[b][6]
Anatomically modern humans (H. sapiens) emerged close to 300,000 to 200,000 years ago[7] in Africa, and H. neanderthalensis emerged around the same time in Europe and Western Asia. H. sapiens dispersed from Africa in several waves, from possibly as early as 250,000 years ago, and certainly by 130,000 years ago, with the so-called Southern Dispersal, beginning about 70–50,000 years ago,[8][9][10] leading to the lasting colonisation of Eurasia and Oceania by 50,000 years ago. H. sapiens met and interbred witharchaic humans in Africa and in Eurasia.[11][12] Separate archaic (non-sapiens) human species including Neanderthals are thought to have survived until around 40,000 years ago.
The Latin noun homō (genitive hominis) means "human being" or "man" in the generic sense of "human being, mankind".[c] The binomial nameHomo sapiens was coined by Carl Linnaeus (1758).[d][15] Names for other species of the genus were introduced from the second half of the 19th century (H. neanderthalensis 1864, H. erectus 1892).
The genus Homo has not been strictly defined, even today.[16][17][18] Since the early human fossil record began to slowly emerge from the earth, the boundaries and definitions of the genus have been poorly defined and constantly in flux. Because there was no reason to think it would ever have any additional members, Carl Linnaeus did not even bother to define Homo when he first created it for humans in the 18th century. The discovery of Neanderthal brought the first addition.
The genus Homo was given its taxonomic name to suggest that its member species can be classified as human. And, over the decades of the 20th century, fossil finds of pre-human and early human species from late Miocene and early Pliocene times produced a rich mix for debating classifications. There is continuing debate on delineating Homo from Australopithecus—or, indeed, delineating Homo from Pan. Even so, classifying the fossils of Homo coincides with evidence of: (1) competent human bipedalism in Homo habilis inherited from the earlier Australopithecus of more than four million years ago, as demonstrated by the Laetoli footprints; and (2) human tool culture having begun by 2.5 million years ago to 3 million years ago.[19]
From the late-19th to mid-20th centuries, a number of new taxonomic names, including new generic names, were proposed for early human fossils; most have since been merged with Homo in recognition that Homo erectus was a single species with a large geographic spread of early migrations. Many such names are now regarded as "synonyms" with Homo, including Pithecanthropus,[20]Protanthropus,[21]Sinanthropus,[22]Cyphanthropus,[23]Africanthropus,[24]Telanthropus,[25]Atlanthropus,[26] and Tchadanthropus.[27][28]
Classifying the genus Homo into species and subspecies is subject to incomplete information and remains poorly done. This has led to using common names ("Neanderthal" and "Denisovan"), even in scientific papers, to avoid trinomial names or the ambiguity of classifying groups as incertae sedis (uncertain placement)—for example, H. neanderthalensis vs. H. sapiens neanderthalensis, or H. georgicus vs. H. erectus georgicus.[29] Some recently extinct species in the genus have been discovered only lately and do not as yet have consensus binomial names (see Denisova hominin).[30] Since the beginning of the Holocene, it is likely that Homo sapiens (anatomically modern humans) has been the only extant species of Homo.
John Edward Gray (1825) was an early advocate of classifying taxa by designating tribes and families.[31] Wood and Richmond (2000) proposed that Hominini ("hominins") be designated as a tribe that comprised all species of early humans and pre-humans ancestral to humans back to after the chimpanzee–human last common ancestor, and that Hominina be designated a subtribe of Hominini to include only the genus Homo — that is, not including the earlier upright walking hominins of the Pliocene such as Australopithecus, Orrorin tugenensis, Ardipithecus, or Sahelanthropus.[32] Designations alternative to Hominina existed, or were offered: Australopithecinae (Gregory & Hellman 1939) and Preanthropinae (Cela-Conde & Altaba 2002);[33][34][35] and later, Cela-Conde and Ayala (2003) proposed that the four genera Australopithecus, Ardipithecus, Praeanthropus, and Sahelanthropus be grouped with Homo within Hominini (sans Pan).[34]
Especially since the 2010s, the delineation of Homo in Australopithecus has become more contentious. Traditionally, the advent of Homo has been taken to coincide with the first use of stone tools (the Oldowan industry), and thus by definition with the beginning of the Lower Palaeolithic. But in 2010, evidence was presented that seems to attribute the use of stone tools to Australopithecus afarensis around 3.3 million years ago, close to a million years before the first appearance of Homo.[38]LD 350-1, a fossil mandible fragment dated to 2.8 Mya, discovered in 2013 in Afar, Ethiopia, was described as combining "primitive traits seen in early Australopithecus with derived morphology observed in later Homo.[39] Some authors would push the development of Homo close to or even past 3 Mya.[e] This finds support in a recent phylogenetic study in hominins that by using morphological, molecular and radiometric information, dates the emergence of Homo at 3.3 Ma (4.30 – 2.56 Ma).[40] Others have voiced doubt as to whether Homo habilis should be included in Homo, proposing an origin of Homo with Homo erectus at roughly 1.9 Mya instead.[41]
The most salient physiological development between the earlier australopithecine species and Homo is the increase in endocranial volume (ECV), from about 460 cm3 (28 cu in) in A. garhi to 660 cm3 (40 cu in) in H. habilis and further to 760 cm3 (46 cu in) in H. erectus, 1,250 cm3 (76 cu in) in H. heidelbergensis and up to 1,760 cm3 (107 cu in) in H. neanderthalensis. However, a steady rise in cranial capacity is observed already in Autralopithecina and does not terminate after the emergence of Homo, so that it does not serve as an objective criterion to define the emergence of the genus.[42]
Homo habilis
Homo habilis emerged about 2.1 Mya. Already before 2010, there were suggestions that H. habilis should not be placed in the genus Homo but rather in Australopithecus.[43][44] The main reason to include H. habilis in Homo, its undisputed tool use, has become obsolete with the discovery of Australopithecus tool use at least a million years before H. habilis.[38] Furthermore, H. habilis was long thought to be the ancestor of the more gracile Homo ergaster (Homo erectus). In 2007, it was discovered that H. habilis and H. erectus coexisted for a considerable time, suggesting that H. erectus is not immediately derived from H. habilis but instead from a common ancestor.[45] With the publication of Dmanisi skull 5 in 2013, it has become less certain that Asian H. erectus is a descendant of African H. ergaster which was in turn derived from H. habilis. Instead, H. ergaster and H. erectus appear to be variants of the same species, which may have originated in either Africa or Asia[46] and widely dispersed throughout Eurasia (including Europe, Indonesia, China) by 0.5 Mya.[47]
Homo erectus has often been assumed to have developed anagenetically from H. habilis from about 2 million years ago. This scenario was strengthened with the discovery of Homo erectus georgicus, early specimens of H. erectus found in the Caucasus, which seemed to exhibit transitional traits with H. habilis. As the earliest evidence for H. erectus was found outside of Africa, it was considered plausible that H. erectus developed in Eurasia and then migrated back to Africa. Based on fossils from the Koobi Fora Formation, east of Lake Turkana in Kenya, Spoor et al. (2007) argued that H. habilis may have survived beyond the emergence of H. erectus, so that the evolution of H. erectus would not have been anagenetically, and H. erectus would have existed alongside H. habilis for about half a million years (1.9 to 1.4 million years ago), during the early Calabrian.[45] On 31 August 2023, researchers reported, based on genetic studies, that a human ancestorpopulation bottleneck (from a possible 100,000 to 1000 individuals) occurred "around 930,000 and 813,000 years ago ... lasted for about 117,000 years and brought human ancestors close to extinction."[48][49]
Weiss (1984) estimated that there have been about 44 billion (short scale) members of the genus Homo from its origins to the evolution of H. erectus, about 56 billion individuals from H. erectus to the Neolithic, and another 51 billion individuals since the Neolithic. This provides the opportunity for an immense amount of new mutational variation to have arisen during human evolution.[50]
A separate South African species Homo gautengensis has been postulated as contemporary with H. erectus in 2010.[51]
A taxonomy of Homo within the great apes is assessed as follows, with Paranthropus and Homo emerging within Australopithecus (shown here cladistically granting Paranthropus, Kenyanthropus, and Homo).[a][f][6][53][52][4][54][55][56][57][58][59][60][excessive citations] The exact phylogeny within Australopithecus is still highly controversial. Approximate radiation dates of daughter clades are shown in millions of years ago (Mya).[61][57]Sahelanthropus and Orrorin, possibly sisters to Australopithecus, are not shown here. The naming of groupings is sometimes muddled as often certain groupings are presumed before any cladistic analysis is performed.[55]
Several of the Homo lineages appear to have surviving progeny through introgression into other lines. Genetic evidence indicates an archaic lineage separating from the other human lineages 1.5 million years ago, perhaps H. erectus, may have interbred into the Denisovans about 55,000 years ago.[62][54][63] Fossil evidence shows H. erectus s.s. survived at least until 117,000 yrs ago, and the even more basal H. floresiensis survived until 50,000 years ago. A 1.5-million-year H. erectus-like lineage appears to have made its way into modern humans through the Denisovans and specifically into the Papuans and aboriginal Australians.[54] The genomes of non-sub-Saharan African humans show what appear to be numerous independent introgression events involving Neanderthal and in some cases also Denisovans around 45,000 years ago.[64][63] The genetic structure of some sub-Saharan African groups seems to be indicative of introgression from a west Eurasian population some 3,000 years ago.[58][65]
Some evidence suggests that Australopithecus sediba could be moved to the genus Homo, or placed in its own genus, due to its position with respect to e.g. H. habilis and H. floresiensis.[56][66]
By about 1.8 million years ago, H. erectus is present in both East Africa (H. ergaster) and in Western Asia (H. georgicus). The ancestors of Indonesian H. floresiensis may have left Africa even earlier.[g][56]
Homo neanderthalensis and H. sapiens develop after about 300 kya. Homo naledi is present in Southern Africa by 300 kya.
H. sapiens soon after its first emergence spread throughout Africa, and to Western Asia in several waves, possibly as early as 250 kya, and certainly by 130 kya. In July 2019, anthropologists reported the discovery of 210,000 year old remains of a H. sapiens and 170,000 year old remains of a H. neanderthalensis in Apidima Cave, Peloponnese, Greece, more than 150,000 years older than previous H. sapiens finds in Europe.[69][70][71]
Among extant populations of H. sapiens, the deepest temporal division is found in the San people of Southern Africa, estimated at close to 130,000 years,[74] or possibly more than 300,000 years ago.[75] Temporal division among non-Africans is of the order of 60,000 years in the case of Australo-Melanesians. Division of Europeans and East Asians is of the order of 50,000 years, with repeated and significant admixture events throughout Eurasia during the Holocene.
Archaic human species may have survived until the beginning of the Holocene, although they were mostly extinct or absorbed by the expanding H. sapiens populations by 40 kya (Neanderthal extinction).
There has historically been a trend to postulate new human species based on as little as an individual fossil. A "minimalist" approach to human taxonomy recognizes at most three species, H. habilis (2.1–1.5 Mya, membership in Homo questionable), H. erectus (1.8–0.1 Mya, including the majority of the age of the genus, and the majority of archaic varieties as subspecies,[76][77][78] including H. heidelbergensis as a late or transitional variety[79][80][81]) and Homo sapiens (300 kya to present, including H. neanderthalensis and other varieties as subspecies). Consistent definitions and methodology of species delineation are not generally agreed upon in anthropology or paleontology. Indeed, speciating populations of mammals can typically interbreed for several million years after they begin to genetically diverge,[82][83] so all contemporary "species" in the genus Homo would potentially have been able to interbreed at the time, and introgression from beyond the genus Homo can not a priori be ruled out.[84] It has been suggested that H. naledi may have been a hybrid with a late surviving Australipith (taken to mean beyond Homo, ed.),[53] despite the fact that these lineages generally are regarded as long extinct. As discussed above, many introgressions have occurred between lineages, with evidence of introgression after separation of 1.5 million years.
^ abThe conventional estimate on the age of H. habilis is at roughly 2.1 to 2.3 million years.[1][2] Suggestions for pushing back the age to 2.8 Mya were made in 2015 based on the discovery of a jawbone.[3]
^Homo erectus in the narrow sense (the Asian species) was extinct by 140,000 years ago; H. erectus soloensis, found in Java, is considered the latest known survival of H. erectus. Formerly dated to as late as 50,000 to 40,000 years ago, a 2011 study pushed the H. e. soloensis extinction date back to 143,000 years ago at the latest, more likely before 550,000 years ago.[6]
^The word "human" itself is from Latin humanus, an adjective formed on the root of homo, thought to derive from a Proto-Indo-European word for "earth" reconstructed as *dhǵhem-.[13]
^In 1959, Carl Linnaeus was designated as the lectotype for Homo sapiens,[14] which means that following the nomenclatural rules, Homo sapiens was validly defined as the animal species to which Linnaeus belonged.
^Cela-Conde & Ayala (2003) recognize five genera within Hominina: Ardipithecus, Australopithecus (including Paranthropus), Homo (including Kenyanthropus), Praeanthropus (including Orrorin), and Sahelanthropus.[34]
^In a 2015 phylogenetic study, H. floresiensis was placed with Australopithecus sediba, H. habilis and Dmanisi Man, raising the possibility that the ancestors of H. floresiensis left Africa before the appearance of H. erectus, possibly even becoming the first hominins to do so and evolved further in Asia.[56]
^Confirmed H. habilis fossils are dated to between 2.1 and 1.5 million years ago. This date range overlaps with the emergence of Homo erectus.[85][86]
^Hominins with "proto-Homo" traits may have lived as early as 2.8 million years ago, as suggested by a fossil jawbone classified as transitional between Australopithecus and Homo discovered in 2015.
^A species proposed in 2010 based on the fossil remains of three individuals dated between 1.9 and 0.6 million years ago. The same fossils were also classified as H. habilis, H. ergaster or Australopithecus by other anthropologists.
^H. erectus may have appeared some 2 million years ago. Fossils dated to as much as 1.8 million years ago have been found both in Africa and in Southeast Asia, and the oldest fossils by a narrow margin (1.85 to 1.77 million years ago) were found in the Caucasus, so that it is unclear whether H. erectus emerged in Africa and migrated to Eurasia, or if, conversely, it evolved in Eurasia and migrated back to Africa.
^Homo erectus soloensis, found in Java, is considered the latest known survival of H. erectus. Formerly dated to as late as 50,000 to 40,000 years ago, a 2011 study pushed back the date of its extinction of H. e. soloensis to 143,000 years ago at the latest, more likely before 550,000 years ago.
[90]
^Now also included in H. erectus are Peking Man (formerly Sinanthropus pekinensis) and Java Man (formerly Pithecanthropus erectus).
^The type fossil is Mauer 1, dated to ca. 0.6 million years ago.
The transition from H. heidelbergensis to H. neanderthalensis between 300 and 243 thousand years ago is conventional, and makes use of the fact that there is no known fossil in this period. Examples of H. heidelbergensis are fossils found at Bilzingsleben (also classified as Homo erectus bilzingslebensis).
^The age of H. sapiens has long been assumed to be close to 200,000 years, but since 2017 there have been a number of suggestions extending this time to as high as 300,000 years.
In 2017, fossils found in Jebel Irhoud (Morocco) suggest that Homo sapiens may have speciated by as early as 315,000 years ago.[96]
Genetic evidence has been adduced for an age of roughly 270,000 years.[97]
^provisional names Homo sp. Altai or Homo sapiens ssp. Denisova.
^The first humans with "proto-Neanderthal traits" lived in Eurasia as early as 0.6 to 0.35 million years ago (classified as H. heidelbergensis, also called a chronospecies because it represents a chronological grouping rather than being based on clear morphological distinctions from either H. erectus or H. neanderthalensis). There is a fossil gap in Europe between
300 and 243 kya, and by convention, fossils younger than 243 kya are called "Neanderthal".[99]
^younger than 450 kya, either between 190–130 or between 70–10 kya[100]
References
^Stringer, C.B. (1994). "Evolution of early humans". In Jones, S.; Martin, R.; Pilbeam, D. (eds.). The Cambridge Encyclopedia of Human Evolution. Cambridge: Cambridge University Press. p. 242.
^Schrenk, F.; Kullmer, O.; Bromage, T. (2007). "Chapter 9: The Earliest Putative Homo Fossils". In Henke, W.; Tattersall, I. (eds.). Handbook of Paleoanthropology. pp. 1611–1631. doi:10.1007/978-3-540-33761-4_52.
^Lowery RK, Uribe G, Jimenez EB, Weiss MA, Herrera KJ, Regueiro M, Herrera RJ (November 2013). "Neanderthal and Denisova genetic affinities with contemporary humans: introgression versus common ancestral polymorphisms". Gene. 530 (1): 83–94. doi:10.1016/j.gene.2013.06.005. PMID23872234.
This study raises the possibility of observed genetic affinities between archaic and modern human populations being mostly due to common ancestral polymorphisms.
^"ape-man", from Pithecanthropus erectus (Java Man), Eugène Dubois, Pithecanthropus erectus: eine menschenähnliche Übergangsform aus Java (1894), identified with the Pithecanthropus alalus (i.e. "non-speaking ape-man") hypothesized earlier by Ernst Haeckel
^Haeckel, Ernst (1895). "Protanthropus primigenius". Systematische Phylogenie. 3: p. 625. early man
^"African man", used by T.F. Dreyer (1935) for the Florisbad Skull he found in 1932 (also Homo florisbadensis or Homo helmei). Also the genus suggested for a number of archaic human skulls found at Lake Eyasi by Weinert (1938). Leaky, Journal of the East Africa Natural History Society' (1942), p. 43.
^"remote man"; from Telanthropus capensis (Broom and Robinson 1949), see (1961), p. 487.
^from Atlanthropus mauritanicus,
name given to the species of fossils (three lower jaw bones and a parietal bone of a skull) discovered in 1954 to 1955 by Camille Arambourg in Tighennif, Algeria. Arambourg, C. (1955). "A recent discovery in human paleontology: Atlanthropus of ternifine (Algeria)". American Journal of Physical Anthropology. 13 (2): 191–201. doi:10.1002/ajpa.1330130203.
^Coppens, Y. (1965). "L'Hominien du Tchad". Actes V Congr. PPEC. I: 329f.
^Coppens, Y. (1966). "Le Tchadanthropus". Anthropologia. 70: 5–16.
^Gray, J.E. (1825). "An outline of an attempt at the disposition of Mammalia into Tribes and Families, with a list of genera apparently appertaining to each Tribe". Annals of Philosophy. new series: 337–344.
^ abMcPherron, S.P.; Alemseged, Z.; Marean, C.W.; Wynn, J.G.; Reed, D.; Geraads, D.; et al. (August 2010). "Evidence for stone-tool-assisted consumption of animal tissues before 3.39 million years ago at Dikika, Ethiopia". Nature. 466 (7308): 857–860. Bibcode:2010Natur.466..857M. doi:10.1038/nature09248. PMID20703305. S2CID4356816. The oldest direct evidence of stone tool manufacture comes from Gona (Ethiopia) and dates to between 2.6 and 2.5 million years (Myr) ago. [...] Here we report stone-tool-inflicted marks on bones found during recent survey work in Dikika, Ethiopia [... showing] unambiguous stone-tool cut marks for flesh removal [..., dated] to between 3.42 and 3.24 Myr ago [...] Our discovery extends by approximately 800,000 years the antiquity of stone tools and of stone-tool-assisted consumption of ungulates by hominins; furthermore, this behaviour can now be attributed to Australopithecus afarensis.
^Kimbel, W.H.; Villmoare, B. (July 2016). "From Australopithecus to Homo: the transition that wasn't". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 371 (1698): 20150248. doi:10.1098/rstb.2015.0248. PMC4920303. PMID27298460. A fresh look at brain size, hand morphology and earliest technology suggests that a number of key Homo attributes may already be present in generalized species of Australopithecus, and that adaptive distinctions in Homo are simply amplifications or extensions of ancient hominin trends. [...] the adaptive shift represented by the ECV of Australopithecus is at least as significant as the one represented by the ECV of early Homo, and that a major 'grade-level' leap in brain size with the advent of H. erectus is probably illusory.
^Wood & Richmond (2000), p. 41: "A recent reassessment of cladistic and functional evidence concluded that there are few, if any, grounds for retaining H. habilis in Homo, and recommended that the material be transferred (or, for some, returned) to Australopithecus (Wood & Collard, 1999)."
^ ab
Spoor, F.; Leakey, M.G.; Gathogo, P.N.; Brown, F.H.; Antón, S.C.; McDougall, I.; et al. (August 2007). "Implications of new early Homo fossils from Ileret, east of Lake Turkana, Kenya". Nature. 448 (7154): 688–691. Bibcode:2007Natur.448..688S. doi:10.1038/nature05986. PMID17687323. S2CID35845. A partial maxilla assigned to H. habilis reliably demonstrates that this species survived until later than previously recognized, making an anagenetic relationship with H. erectus unlikely. The discovery of a particularly small calvaria of H. erectus indicates that this taxon overlapped in size with H. habilis, and may have shown marked sexual dimorphism. The new fossils confirm the distinctiveness of H. habilis and H. erectus, independently of overall cranial size, and suggest that these two early taxa were living broadly sympatrically in the same lake basin for almost half a million years.
^Curnoe, D. (June 2010). "A review of early Homo in southern Africa focusing on cranial, mandibular and dental remains, with the description of a new species (Homo gautengensis sp. nov.)". HOMO. 61 (3): 151–77. doi:10.1016/j.jchb.2010.04.002. PMID20466364.
Mounier, A.; Caparros, M. (2015). "The phylogenetic status of Homo heidelbergensis – a cladistic study of Middle Pleistocene hominins". BMSAP (in French). 27 (3–4): 110–134. doi:10.1007/s13219-015-0127-4. ISSN0037-8984. S2CID17449909.
^Curnoe, D. (June 2010). "A review of early Homo in southern Africa focusing on cranial, mandibular and dental remains, with the description of a new species (Homo gautengensis sp. nov.)". HOMO. 61 (3): 151–177. doi:10.1016/j.jchb.2010.04.002. PMID20466364.