Hereditarily finite setIn mathematics and set theory, hereditarily finite sets are defined as finite sets whose elements are all hereditarily finite sets. In other words, the set itself is finite, and all of its elements are finite sets, recursively all the way down to the empty set. Formal definitionA recursive definition of well-founded hereditarily finite sets is as follows:
Only sets that can be built by a finite number of applications of these two rules are hereditarily finite. RepresentationThis class of sets is naturally ranked by the number of bracket pairs necessary to represent the sets:
In this way, the number of sets with bracket pairs is[1] 1, 1, 1, 2, 3, 6, 12, 25, 52, 113, 247, 548, 1226, 2770, 6299, 14426, ...
DiscussionThe set is an example for such a hereditarily finite set and so is the empty set , as noted. On the other hand, the sets or are examples of finite sets that are not hereditarily finite. For example, the first cannot be hereditarily finite since it contains at least one infinite set as an element, when . The class of all hereditarily finite sets is denoted by , meaning that the cardinality of each member is smaller than . (Analogously, the class of hereditarily countable sets is denoted by .) is in bijective correspondence with . It can also be denoted by , which denotes the th stage of the von Neumann universe.[2] So here it is a countable set. ModelsAckermann codingIn 1937, Wilhelm Ackermann introduced an encoding of hereditarily finite sets as natural numbers.[3][4][5] It is defined by a function that maps each hereditarily finite set to a natural number, given by the following recursive definition: For example, the empty set Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "http://localhost:6011/en.wikipedia.org/v1/":): {\displaystyle \{\}} contains no members, and is therefore mapped to an empty sum, that is, the number zero. On the other hand, a set with distinct members is mapped to . The inverse is given by where BIT denotes the BIT predicate. The Ackermann coding can be used to construct a model of finitary set theory in the natural numbers. More precisely, (where is the converse relation of , swapping its two arguments) models Zermelo–Fraenkel set theory ZF without the axiom of infinity. Here, each natural number models a set, and the relation models the membership relation between sets. Graph modelsThe class can be seen to be in exact correspondence with a class of rooted trees, namely those without non-trivial symmetries (i.e. the only automorphism is the identity): The root vertex corresponds to the top level bracket and each edge leads to an element (another such set) that can act as a root vertex in its own right. No automorphism of this graph exist, corresponding to the fact that equal branches are identified (e.g. , trivializing the permutation of the two subgraphs of shape ). This graph model enables an implementation of ZF without infinity as data types and thus an interpretation of set theory in expressive type theories. Graph models exist for ZF and also set theories different from Zermelo set theory, such as non-well founded theories. Such models have more intricate edge structure. In graph theory, the graph whose vertices correspond to hereditarily finite sets and edges correspond to set membership is the Rado graph or random graph. AxiomatizationsTheories of finite setsIn the common axiomatic set theory approaches, the empty set also represents the first von Neumann ordinal number, denoted . All finite von Neumann ordinals are indeed hereditarily finite and, thus, so is the class of sets representing the natural numbers. In other words, includes each element in the standard model of natural numbers and so a set theory expressing must necessarily contain them as well. Now note that Robinson arithmetic can already be interpreted in ST, the very small sub-theory of Zermelo set theory Z− with its axioms given by Extensionality, Empty Set and Adjunction. All of has a constructive axiomatization involving these axioms and e.g. Set induction and Replacement. Axiomatically characterizing the theory of hereditarily finite sets, the negation of the axiom of infinity may be added. As the theory validates the other axioms of , this establishes that the axiom of infinity is not a consequence these other axioms. ZFThe hereditarily finite sets are a subclass of the Von Neumann universe. Here, the class of all well-founded hereditarily finite sets is denoted . Note that this is also a set in this context. If we denote by the power set of , and by the empty set, then can be obtained by setting for each integer . Thus, can be expressed as and all its elements are finite. This formulation shows, again, that there are only countably many hereditarily finite sets: is finite for any finite , its cardinality is in Knuth's up-arrow notation (a tower of powers of two), and the union of countably many finite sets is countable. Equivalently, a set is hereditarily finite if and only if its transitive closure is finite. See also
References
|