Share to: share facebook share twitter share wa share telegram print page

 

Falls in older adults

Falls in older adults
Front-wheeled walker
SpecialtyEmergency medicine, gerontology
Accidental deaths in the United States
2020

2004
  Falls

Falls in older adults are a significant cause of morbidity and mortality and are a major class of preventable injuries. Falling is one of the most common accidents that cause a loss in the quality of life for older adults, and is usually precipitated by a loss of balance and weakness in the legs.[1][2] The cause of falling in old age is often multifactorial and may require a multidisciplinary approach both to treat any injuries sustained and to prevent future falls.[3] Falls include dropping from a standing position or from exposed positions such as those on ladders or stepladders. The severity of injury is generally related to the height of the fall. The state of the ground surface onto which the victim falls is also important, harder surfaces causing more severe injury. Falls can be prevented by ensuring that carpets are tacked down, that objects like electric cords are not in one's path, that hearing and vision are optimized, dizziness is minimized, alcohol intake is moderated and that shoes have low heels or rubber soles.[4]

A review of clinical trial evidence by the European Food Safety Authority led to a recommendation that people over the age of 60 years should supplement the diet with vitamin D to reduce the risk of falling and bone fractures.[5] Falls are an important aspect of geriatric medicine.

Definition

Other definitions are more inclusive and do not exclude "major intrinsic events" as a fall.[6] Falls are of concern within medical treatment facilities. Fall prevention is usually a priority in healthcare settings.[7]

A 2006 review of literature identified the need for standardization of falls taxonomy due to the variation within research.[8] The Prevention of Falls Network Europe (ProFane) taxonomy for the definition and reporting of falls aimed at mitigating this problem.[9] ProFane recommended that a fall be defined as "an unexpected event in which the participants come to rest on the ground, floor, or lower level."[9] The ProFane taxonomy is currently used as a framework to appraise falls-related research studies in Cochrane Systematic Reviews.[10][11][12]

Signs and symptoms

Causes

Falls are often caused by a number of factors. The faller may live with many risk factors for falling and only have problems when another factor appears. As such, management is often tailored to treating the factor that caused the fall, rather than all of the risk factors a patient has for falling. Risk factors may be grouped into intrinsic factors, such as existence of a specific ailment or disease. External or extrinsic factors include the environment and the way in which it may encourage or deter accidental falls. Such factors as lighting and illumination, personal aid equipment and floor traction are all important in fall prevention.[13]

Intrinsic factors

Extrinsic factors

Hanging straps with triangular handles in a modern Japanese commuter train
Grab rails on a longer-distance commuter train catering for mainly seated passengers
A staircase with metal handrails
  • Poor lighting due to low luminance of existing lights or lamps, so preventing hazard identification and avoidance. Eyesight deteriorates with age, and extra lighting will be needed where seniors move frequently. The luminance provided by the bulbs used should be higher than normally accepted. Incandescent bulbs have the advantage that they light up much more quickly than other types of bulb when switched on. This is vital when entering a room where an obstacle can trip the user for example, especially if not seen in time to prevent the accident.
  • Stairs with inadequate handrails, or too steep, encouraging trips and falls. The steps should be spaced widely with low risers, and surfaces should be slip-resistant. Softer surfaces can help limit impact injuries by cushioning loads.
  • Doorways with adequate headroom so that the user's head does not hit the lintel. Doorways of low headroom (less than about 6 ft (1.8 m)) are common in old houses and cottages for example.
  • Rugs/floor surfaces with low friction, causing poor traction and individual instability. All surfaces should have a high friction coefficient with shoe soles.
  • Clothing/footwear poorly fitted, shoes of low friction against floor. Rubber soles with ribs normally have a high friction coefficient, so are preferred for most purposes. Clothing should fit the user well, without trailing parts (hems falling below the heel and loose shoelaces) which could snag with obstacles.
  • Lack of equipment/aids such as walking sticks or walking frames, such as Zimmer frames so as to improve user stability. Grab bars and hanging straps should be supplied plentifully, especially in critical areas where users may be vulnerable.

Diagnosis

When assessing a person who has fallen, an eyewitness account of the incident is helpful. However the person who fell may have been temporarily unconscious, and may not be able to give an accurate description of the fall. In practice, these eyewitness accounts are often unavailable.

Important points of inquiry[13]
  • Visual motor reaction time
  • Frequency of falls
  • Effectiveness of "parachute" corrective response of moving hand and arm to "break" the fall
  • Eyewitness account
  • Associated features
  • Risk factors for falling
  • Legal and illegal drug interactions
  • Sedative and alcohol consumption
  • Assessment of proper, safe use of cane or walker assistive devices

Prevention

The relationship between the person at risk of falling and their environment is important for determining the risk falls and taking measures to prevent falls. An assessment with an occupational therapist may be helpful to determine an appropriate rehabilitation plan to prevent falls by taking into consideration both the person and their living environment.[14][15] A large body of evidence shows that efforts to include exercise decrease the risk of falls,[16][17] and yet the fear of falling can lead to a decrease in participation in physical exercise.[14]

Possible interventions to prevent falls include:

Environmental adaptations

Improvements to the person's environment such as their home or workplace may help to reduce the risk of falling.[14][18]

  • A review of the current living conditions
  • Adding safety devices, such as grab handles, high friction floors, as well as low power lighting at night to the person's home or work environment
  • Identify and remove potential hazards
  • Vision improvement

Behavioural interventions

  • Regular exercise: lower limb strengthening exercise to increase muscle strength.[19] Other forms of exercise, such as those involving gait, balance, co-ordination and functional tasks, may also help improve balance in older adults.[20]
  • A 2014 review concluded that exercise interventions may reduce fear of falling (FOF) in community-dwelling older adults immediately after the intervention, without evidence of long-term effects.[21]
  • Monitoring of medications and ongoing medical problems. For example, people with polymyalgia rheumatica often take long-term steroids, leading to osteoporosis. Research in the UK has also suggested that these people would benefit from a falls assessment when first diagnosed, and regular treatment reviews.[22][23]
  • Improvements to footwear and use of orthotic devices if required.[24]
  • Supplementation with vitamin D is not recommended in those without vitamin D deficiency for fall prevention in older adults.[17]

Psychological interventions

Cognitive behavioral therapy (CBT) has been suggested as a prevention approach to improve confidence and help older people reduce the fear of falling.[25] There is moderate evidence to suggest that this technique can be effective at reducing the fear of falling for up to and beyond 6 months.[25] CBT appears to have a positive effect on activity avoidance and risk of depression; however, it is not clear whether CBT reduces the incidence of falls in older people.[25]

Interventions to minimize the consequences of falls

  • Hip protectors may decrease risk of hip fractures slightly, although they may slightly increase the risk of a pelvic fracture in older adults living in nursing care facilities. Little or no effect reported on other fractures or falls.[26]
  • Treatment for osteoporosis

Hospital

People who are hospitalized are at risk for falling. A randomized trial showed that use of a tool kit reduced falls in hospitals. Nurses complete a valid fall risk assessment scale. From that, a software package develops customized fall prevention interventions to address patients' specific determinants of fall risk. The kit also has bed posters with brief text and an accompanying icon, patient education handouts, and plans of care, all communicating patient-specific alerts to key stakeholders.[27]

Screening

The American Geriatrics Society and the British Geriatrics Society recommend that all older adults should be screened for "falls in the past year". Fall history is the strongest risk factor associated with subsequent falls.[28] Older people who have experienced at least one fall in the last 6 months, or who believe that they may fall in the coming months, should be evaluated with the aim of reducing their risk of recurrent falls.[29]

Many health institutions in the USA have developed screening questionnaires. Enquiry includes difficulty with walking and balance, medication use to help with sleep/mood, loss of sensation in feet, vision problems, fear of falling, and use of assistive devices for walking.

Older adults who report falls should be asked about their circumstances and frequency to assess risks from gait and balance which may be compromised. A clinician performs a fall risk assessment, to include history, physical exam, functional capability, and environment.[30]

Population-based interventions

Prevention approaches that target the whole population of older people in a particular area are defined as population-based interventions. These include policies put in place by governments for vitamin supplementation, maintenance programs to reduce risks in public spaces and homes, public health programs offering exercise classes and sharing resources widely (not just to people identified as being high risk), improving access to gyms (for example allowing seniors to access a gym for free if over a certain age).[31] The evidence supporting population-based interventions is weak. It is not clear if population-based interventions that improve access to medications or nutritional program are effective.[31]

Epidemiology

The incidence of falls increases progressively with age. According to the existing scientific literature, around one-third of the elderly population experience one or more falls each year, while 10% experience multiple falls annually. For people over 80, the annual incidence of falls can reach 50%.[32][33][34][35][36]

History

Researchers have tried to create a consensual definition of a fall since the 1980s. Tinneti et al. defined a fall as "an event which results in a person coming to rest unintentionally on the ground or other lower level, not as a result of a major intrinsic event (such as a stroke) or overwhelming hazard."[37]

Economics

The health care impact and costs of falls in older adults are significantly rising all over the world. The cost of falls is categorized into two aspects: direct cost and indirect cost.

Direct costs are what patients and insurance companies pay for treating fall-related injuries. This includes fees for the hospital and nursing home, doctors and other professional services, rehabilitation, community-based services, use of medical equipment, prescription drugs, changes made to home and insurance processing.

Indirect costs include the loss of productivity of family caregivers and long-term effects of fall-related injuries such as disability, dependence on others and reduced quality of life.

In the United States alone, the total cost of falling injuries for people 65 and older was $31 billion in 2015. The costs covered millions of hospital emergency room visits for non-fatal injuries and more than 800,000 hospitalizations. By 2030, the annual number of falling injuries is expected to be 74 million older adults.[38]

Research

Furthermore, a 2012 systematic review has demonstrated that performing dual-task tests (for example, combining a walking task with a counting task) may help in predicting which people are at an increased risk of a fall.[3]

References

  1. ^ Eibling, D. (2018). Balance disorders in older adults.Clinics in GeriatricMedicine,4(2), 175–181. doi:10.1016/j.cger.2018.01.002
  2. ^ Bao X., Qiu Q.-X., Shao Y.-J., Quiben M., Liu H. Effect of Sitting Ba-Duan-Jin Exercises on Balance and Quality of Life among Older Adults: A Preliminary Study. Rehabil. Nurs.. 2020;45(5):271-278. doi:10.1097/rnj.0000000000000219
  3. ^ a b Sarofim M (2012). "Predicting falls in the elderly: do dual-task tests offer any added value? A systematic review". Australian Medical Student Journal. 3 (2): 13–19.
  4. ^ Chang, Huan J. (2010-01-20). "Falls and older adults". JAMA. 303 (3): 288. doi:10.1001/jama.303.3.288. ISSN 0098-7484. PMID 20085959.
  5. ^ "Scientific Opinion on the substantiation of a health claim related to vitamin D and risk of falling pursuant to Article 14 of Regulation (EC) No 1924/2006". EFSA Journal. 9 (9) 2382. 2011. doi:10.2903/j.efsa.2011.2382.
  6. ^ Hughes, R. G.; Currie, L. (2008). "Fall and Injury Prevention – Patient Safety and Quality – NCBI Bookshelf". Ncbi.nlm.nih.gov. PMID 21328754. Retrieved 2015-12-15.
  7. ^ Ficalora, Robert D.; Paul S. Mueller; Thomas J. Beckman; et al., eds. (2013). Mayo Clinic internal medicine board review (10th ed.). Oxford: Oxford University Press. p. 762. ISBN 978-0-19-994894-9. OCLC 822991632.
  8. ^ Hauer K, Lamb SE, Jorstad EC, Todd C, Becker C (2006). "Systematic review of definitions and methods of measuring falls in randomised controlled fall prevention trials". Age and Ageing. 35 (1): 5–10. doi:10.1093/ageing/afi218. PMID 16364930.
  9. ^ a b Lamb SE, Jørstad-Stein EC, Hauer K, Becker C (2005). "Development of a Common Outcome Data Set for Fall Injury Prevention Trials: The Prevention of Falls Network Europe Consensus". Journal of the American Geriatrics Society. 53 (9): 1618–1622. doi:10.1111/j.1532-5415.2005.53455.x. PMID 16137297. S2CID 19526374.
  10. ^ Gillespie LD, Robertson MC, Gillespie WJ, Sherrington C, Gates S, Clemson LM, Lamb SE (2012). "Interventions for preventing falls in older people living in the community". Cochrane Database of Systematic Reviews. 2021 (9): CD007146. doi:10.1002/14651858.CD007146.pub3. PMC 8095069. PMID 22972103.
  11. ^ Hopewell S, Adedire O, Copsey BJ, Sherrington C, Clemson LM, Close JC, Lamb SE (2016). "Multifactorial and multiple component interventions for preventing falls in older people living in the community (Protocol)". Cochrane Database of Systematic Reviews. doi:10.1002/14651858.CD012221.
  12. ^ Sherrington C, Tiedemann A, Fairhall NJ, Hopewell S, Michaleff ZA, Howard K, Clemson L, Lamb SE (2016). "Exercise for preventing falls in older people living in the community (Protocol)". Cochrane Database of Systematic Reviews. doi:10.1002/14651858.CD012424. S2CID 78199547.
  13. ^ a b c Department of Health, National service framework for older people; Standard 6 – Falls, Crown Copyright, 24 May 2001, [1] accessed:19/5/2008
  14. ^ a b c d E, Jian-Yu; Li, Tianjing; McInally, Lianne; Thomson, Katie; Shahani, Uma; Gray, Lyle; Howe, Tracey E.; Skelton, Dawn A. (2020-09-03). "Environmental and behavioural interventions for reducing physical activity limitation and preventing falls in older people with visual impairment". The Cochrane Database of Systematic Reviews. 2020 (9): CD009233. doi:10.1002/14651858.CD009233.pub3. ISSN 1469-493X. PMC 8095028. PMID 32885841.
  15. ^ "Resource: Algorithm for Fall Risk Screening, Assessment, and Intervention" (PDF). Centers for Disease Control and Prevention. 2017. Archived from the original (PDF) on 2017-12-31. Retrieved 31 December 2017.
  16. ^ Tricco, AC; Thomas, SM; Veroniki, AA; Hamid, JS; Cogo, E; Strifler, L; Khan, PA; Robson, R; Sibley, KM; MacDonald, H; Riva, JJ; Thavorn, K; Wilson, C; Holroyd-Leduc, J; Kerr, GD; Feldman, F; Majumdar, SR; Jaglal, SB; Hui, W; Straus, SE (7 November 2017). "Comparisons of Interventions for Preventing Falls in Older Adults: A Systematic Review and Meta-analysis". JAMA. 318 (17): 1687–1699. doi:10.1001/jama.2017.15006. PMC 5818787. PMID 29114830.
  17. ^ a b Grossman, David C.; Curry, Susan J.; Owens, Douglas K.; Barry, Michael J.; Caughey, Aaron B.; Davidson, Karina W.; Doubeni, Chyke A.; Epling, John W.; Kemper, Alex R.; Krist, Alex H.; Kubik, Martha; Landefeld, Seth; Mangione, Carol M.; Pignone, Michael; Silverstein, Michael; Simon, Melissa A.; Tseng, Chien-Wen (24 April 2018). "Interventions to Prevent Falls in Community-Dwelling Older Adults". JAMA. 319 (16): 1696–1704. doi:10.1001/jama.2018.3097. PMID 29710141.
  18. ^ Clemson, Lindy; Stark, Susan; Pighills, Alison C; Fairhall, Nicola J; Lamb, Sarah E; Ali, Jinnat; Sherrington, Catherine (2023-03-10). Cochrane Bone, Joint and Muscle Trauma Group (ed.). "Environmental interventions for preventing falls in older people living in the community". Cochrane Database of Systematic Reviews. 2023 (3). doi:10.1002/14651858.CD013258.pub2. PMC 9998238. PMID 36893804.
  19. ^ Ishigaki, Erika Y.; Ramos, Lidiane G.; Carvalho, Elisa S.; Lunardi, Adriana C. (2016-11-08). "Effectiveness of muscle strengthening and description of protocols for preventing falls in the elderly: a systematic review". Brazilian Journal of Physical Therapy. 18 (2): 111–118. doi:10.1590/S1413-35552012005000148. ISSN 1809-9246. PMC 4183251. PMID 24760166.
  20. ^ Howe, T. E.; Rochester, L; Neil, F; Skelton, D. A.; Ballinger, C (2011). "Exercise for improving balance in older people". The Cochrane Database of Systematic Reviews (11): CD004963. doi:10.1002/14651858.CD004963.pub3. PMC 11493176. PMID 22071817.
  21. ^ Kendrick D, Kumar A, Carpenter H, Zijlstra G, Skelton DA, Cook JR, Stevens Z, Belcher CM, Haworth D, Gawler SJ, Gage H, Masud T, Bowling A, Pearl M, Morris RW, Iliffe S, Delbaere K (2014). "Exercise for reducing fear of falling in older people living in the community" (PDF). Cochrane Database of Systematic Reviews. Art. No.: CD009848 (11): CD009848. doi:10.1002/14651858.CD009848.pub2. PMC 7388865. PMID 25432016. Archived from the original (PDF) on 2018-07-20. Retrieved 2018-11-10.
  22. ^ "Polymyalgia rheumatica: treatment reviews are needed". NIHR Evidence. 2022-06-21. doi:10.3310/nihrevidence_51304. S2CID 251774691. Retrieved 2022-08-05.
  23. ^ Sokhal BS, Hider SL, Paskins Z, Mallen CD, Muller S (2021). "Fragility fractures and prescriptions of medications for osteoporosis in patients with polymyalgia rheumatica: results from the PMR Cohort Study". Rheumatology Advances in Practice. 5 (3) rkab094: rkab094. doi:10.1093/rap/rkab094. PMC 8712242. PMID 34988356.
  24. ^ Tricco, Andrea C.; Thomas, Sonia M.; Veroniki, Areti Angeliki; Hamid, Jemila S.; Cogo, Elise; Strifler, Lisa; Khan, Paul A.; Robson, Reid; Sibley, Kathryn M.; MacDonald, Heather; Riva, John J. (2017-11-07). "Comparisons of Interventions for Preventing Falls in Older Adults". JAMA. 318 (17): 1687–1699. doi:10.1001/jama.2017.15006. ISSN 0098-7484. PMC 5818787. PMID 29114830.
  25. ^ a b c Lenouvel, Eric; Ullrich, Phoebe; Siemens, Waldemar; Dallmeier, Dhayana; Denkinger, Michael; Kienle, Gunver; Zijlstra, G A Rixt; Hauer, Klaus; Klöppel, Stefan (2023-11-15). Cochrane Bone, Joint and Muscle Trauma Group (ed.). "Cognitive behavioural therapy (CBT) with and without exercise to reduce fear of falling in older people living in the community". Cochrane Database of Systematic Reviews. 2023 (11). doi:10.1002/14651858.CD014666.pub2. PMC 10646947. PMID 37965937.
  26. ^ Santesso, Nancy; Carrasco-Labra, Alonso; Brignardello-Petersen, Romina (2014-03-31). "Hip protectors for preventing hip fractures in older people". The Cochrane Database of Systematic Reviews. 3 (3): CD001255. doi:10.1002/14651858.CD001255.pub5. ISSN 1469-493X. PMC 10754476. PMID 24687239. S2CID 27652715.
  27. ^ Dykes PC, Carroll DL, Hurley A, Lipsitz S, Benoit A, Chang F, Meltzer S, Tsurikova R, Zuyov L, Middleton B (2010-11-03). "Fall prevention in acute care hospitals: A randomized trial". JAMA. 304 (17): 1912–1918. doi:10.1001/jama.2010.1567. ISSN 0098-7484. PMC 3107709. PMID 21045097.
  28. ^ DK, Kiely (1998). "Identifying nursing home residents at risk of falling". Journal of the American Geriatrics Society. 46 (5): 551–555. doi:10.1111/j.1532-5415.1998.tb01069.x. PMID 9588366. S2CID 13118673.
  29. ^ Rodríguez-Molinero, Alejandro (2017). "A two-question tool to assess the risk of repeated falls in the elderly". PLOS ONE. 10 (12(5)): e0176703. Bibcode:2017PLoSO..1276703R. doi:10.1371/journal.pone.0176703. PMC 5425174. PMID 28489888.
  30. ^ "Clinical Practice Guideline: Prevention of Falls in Older Persons". The American Geriatrics Society. 2016.
  31. ^ a b Lewis, Sharon R; McGarrigle, Lisa; Pritchard, Michael W; Bosco, Alessandro; Yang, Yang; Gluchowski, Ashley; Sremanakova, Jana; Boulton, Elisabeth R; Gittins, Matthew; Spinks, Anneliese; Rapp, Kilian; MacIntyre, Daniel E; McClure, Roderick J; Todd, Chris (2024-01-05). Cochrane Bone, Joint and Muscle Trauma Group; Cochrane Public Health Group (eds.). "Population-based interventions for preventing falls and fall-related injuries in older people". Cochrane Database of Systematic Reviews. 2024 (1). doi:10.1002/14651858.CD013789.pub2. PMC 10767771. PMID 38180112.
  32. ^ Tinetti (1988). "Risk Factors for Falls among Elderly Persons Living in the Community". N Engl J Med. 319 (26): 1701–7. doi:10.1056/NEJM198812293192604. PMID 3205267.
  33. ^ Nevitt (1989). "Risk factors for recurrent nonsyncopal falls. A prospective study". JAMA. 261 (18): 2663–68. doi:10.1001/jama.1989.03420180087036. PMID 2709546.
  34. ^ Rodríguez-Molinero (2015). "Falls in the Spanish elderly population: Incidence, consequences and risk factors". Rev Esp Geriatr Gerontol. 50 (6): 274–80. doi:10.1016/j.regg.2015.05.005. PMID 26168776.
  35. ^ Rapp (2014). "Fall incidence in Germany: results of two population-based studies, and comparison of retrospective and prospective falls data collection methods". BMC Geriatr. 14: 105. doi:10.1186/1471-2318-14-105. PMC 4179843. PMID 25241278.
  36. ^ Shumway-Cook (2009). "Falls in the Medicare population: incidence, associated factors, and impact on health care". Phys Ther. 89 (4): 324–32. doi:10.2522/ptj.20070107. PMC 2664994. PMID 19228831.
  37. ^ Tinetti ME, Speechley M, Ginter SF (Dec 1988). "Risk factors for falls among elderly persons living in the community". N Engl J Med. 319 (26): 1701–7. doi:10.1056/NEJM198812293192604. PMID 3205267.
  38. ^ "Costs of Falls Among Older Adults". Centers for Disease Control and Prevention, Home and Recreational Safety, U.S. Department of Health & Human Services, Bethesda, MD. 2016. Retrieved 2 December 2016.
Kembali kehalaman sebelumnya