Delta-sleep-inducing peptide (DSIP) is a neuropeptide that when infused into the mesodiencephalic ventricle of recipient rabbits induces spindle and delta EEG activity and reduced motor activities.[1]
Its amino acid sequence is Trp-Ala-Gly-Gly-Asp-Ala-Ser-Gly-Glu (WAGGDASGE). The gene has yet to be found in rabbits, along with any receptors or precursor peptides. However, searches through BLAST have found that it aligns with a hypothetical Amycolatopsis coloradensis protein. This could indicate that DSIP has a bacterial origin.[2]
Discovery
Delta-sleep-inducing peptide was first discovered in 1974 by the Swiss Schoenenberger-Monnier group who isolated it from the cerebral venous blood of rabbits in an induced state of sleep. It was primarily believed to be involved in sleep regulation due to its apparent ability to induce slow-wave sleep in rabbits, but studies on the subject have been contradictory.[3]
DSIP-like material has been found in human breast milk.[4]
Structure and interactions
DSIP is an amphiphilic peptide of molecular weight 850 daltons with the amino acid motif: N-Trp-Ala-Gly-Gly-Asp-Ala-Ser-Gly-Glu-C[5]
In the brain its action may be mediated by NMDA receptors.[7] In another study delta-sleep-inducing peptide stimulated acetyltransferase activity through α1 receptors in rats.[8] It is unknown where DSIP is synthesized.
In vitro it has been found to have a low molecular stability with a half life of only 15 minutes due to the action of a specific aminopeptidase-like enzyme.[9] It has been suggested that in the body it complexes with carrier proteins to prevent degradation, or exists as a component of a large precursor molecule,[10] but as yet no structure or gene has been found for this precursor.
Evidence supports the current belief that it is regulated by glucocorticoids.[11]
Gimble et al. suggest that DSIP interacts with components of the MAPK cascade and is homologous to glucocorticoid-induced leucine zipper (GILZ).[12] GILZ can be induced by Dexamethasone. It prevents Raf-1 activation, which inhibits phosphorylation and activation of ERK.[13]
Function
Many roles for DSIP have been suggested following research carried out using peptide analogues with a greater molecular stability[14] and through measuring DSIP-like immunological (DSIP-LI) response by injecting DSIP antiserum and antibodies.[15]
There is also conflicting evidence as to its involvement in sleep patterns. Some studies suggest a link between DSIP and slow-wave sleep (SWS) promotion[25][26] and suppression of rapid eye movement sleep (REM),[27][28] while some studies show no correlation.[29] Stronger effects on sleep have been noted for the synthesized analogues of DSIP.[30]
It may affect human lensepithelial cell function via the MAPK pathway, which is involved in cell proliferation, differentiation, motility, survival, and apoptosis.[13]
Roles in disease and medicine
It has been found to have anticarcinogenic properties. In a study on mice, injecting a preparation of DSIP over the mice's lifetime decreased total spontaneous tumor incidence 2.6-fold.[31]
The same study found it to also have geroprotective effects: it slowed down the age-related switching-off of oestrous function; it decreased by 22.6% the frequency of chromosome aberrations in bone marrow cells and it increased by 24.1% maximum life span in comparison with the control group.
Levels of DSIP may be significant in patients diagnosed with major depressive disorder (MDD). In several studies, levels of DSIP in the plasma and cerebrospinal fluid are significantly deviated from the norm in patients with MDD, though there are contradictions as to whether levels are higher or lower than healthy control patients.[11][32][33]
Studies have demonstrated a direct link between GILZ expression (homologous to DSIP) and adipogenesis which has links to obesity and metabolic syndrome.[34]
In studies on rats with metaphit-induced epilepsy DSIP acted as an anticonvulsant, significantly decreasing the incidence and duration of fits suggesting DSIP as a potential treatment for epilepsy.[35][36]
DSIP has been found to have an analgesic effect. In studies on mice it was found to have a potent antinociceptive effect when administered intracerebroventricularly or intracisternally (see: Route of administration).[37]
Due to its possible effects on sleep and nociception, trials have been carried out to determine whether DSIP can be used as an anaesthetic. One such study found that administration of DSIP to humans as an adjunct to isoflurane anaesthesia actually increased the heart rate and reduced the depth of anaesthesia instead of deepening it as expected.[38]
Low plasma concentrations of DSIP have been found in patients with Cushing's syndrome.[39]
In Alzheimer's patients levels of DSIP have been found to be slightly elevated, though this is unlikely to be causal.[40]
A preparation of DSIP, Deltaran, has been used to correct central nervous system function in children after antiblastic therapy. Ten children aged 3–16 years were given a ten-day course of Deltaran and their bioelectric activity recorded. It was found that the chemotherapy-induced impairment in the bioelectrical activity of 9 out of the 10 children was reduced by administration of DSIP.[41]
DSIP can act antagonistically on opiate receptors to significantly inhibit the development of opioid and alcohol dependence and is currently being used in clinical trials to treat withdrawal syndrome.[42][43] In one such trial it was reported that in 97% of opiate-dependent and 87% of alcohol-dependent patients the symptoms were alleviated by DSIP administration.[44]
In some studies administration of DSIP has alleviated narcolepsy and normalized disturbed sleeping patterns.[45][46]
Safety and possible side-effects of long-term DSIP use haven't been established in clinical research studies.
References
^Monnier M, Dudler L, Gächter R, Maier PF, Tobler HJ, Schoenenberger GA (April 1977). "The delta sleep inducing peptide (DSIP). Comparative properties of the original and synthetic nonapeptide". Experientia. 33 (4): 548–52. doi:10.1007/BF01922266. PMID862769. S2CID33287951.
^Williams JA (2019-01-01). Dringenberg HC (ed.). "Chapter 23 - Sleep, Immunity, and Stress: Novel Insights From Drosophila". Handbook of Behavioral Neuroscience. Handbook of Sleep Research. 30. Elsevier: 349–362. doi:10.1016/b978-0-12-813743-7.00023-2. ISBN9780128137437. S2CID196679505.
^Schoenenberger GA, Maier PF, Tobler HJ, Monnier M (1977). "A naturally occurring delta-EEG enhancing nonapeptide in rabbits". European Journal of Physiology. 369 (2): 99–109. doi:10.1007/BF00591565. PMID560681. S2CID8845219.
^Charnay Y, Bouras C, Vallet PG, Golaz J, Guntern R, Constantinidis J (1989). "Immunohistochemical distribution of delta sleep inducing peptide in the rabbit brain and hypophysis". Neuroendocrinology. 49 (2): 169–175. doi:10.1159/000125110. PMID2657475.
^Sudakova KV, Umriukhina PE, Rayevskyb KS (2004). "Delta-sleep inducing peptide and neuronal activity after glutamate microiontophoresis: the role of NMDA-receptors". Pathophysiology. 11 (2): 81–86. doi:10.1016/j.pathophys.2004.03.003. PMID15364118.
^Graf MV, Schoenenberger GA (1987). "Delta Sleep-Inducing Peptide Modulates the Stimulation of Rat Pineal N-Acetyltransferase Activity by Involving the α1-Adrenergic Receptor". Journal of Neurochemistry. 48 (4): 1252–1257. doi:10.1111/j.1471-4159.1987.tb05654.x. PMID3029331. S2CID21467144.
^ abcSchoenenberger GA (1984). "Characterization, properties and multivariate functions of Delta-Sleep Inducing Peptide (DSIP)". European Neurology. 23 (5): 321–345. doi:10.1159/000115711. PMID6548966.
^Inoué S, Borbely AA (1985). Endogenous Sleep Substances And Sleep Regulation: Proceedings of the Taniguchi Symposia on Brain Sciences. Boston: Brill Academic Publishers. ISBN978-90-6764-058-9.
^ abWestrin A, Ekman R, Traskman-Bendz L (1998). "High Delta Sleep-Inducing Peptide-Like Immunoreactivity in Plasma in Suicidal Patients with Major Depressive Disorder". Biological Psychiatry. 43 (10): 734–739. doi:10.1016/S0006-3223(97)00254-0. PMID9606527. S2CID37126381.
^Gimble JM, Ptitsyn AA, Goh BC, Hebert T, Yu G, Wu X, Zvonic S, Shi XM, Floyd ZE (2009). "Delta sleep-inducing peptide and glucocorticoidinduced leucine zipper: potential links between circadian mechanisms and obesity?". Obesity Reviews. 10: 46–51. doi:10.1111/j.1467-789X.2009.00661.x. PMID19849801. S2CID5943377.
^synthesized by V. N. Kalikhevich and S. I. Churkina, University Chemical Institute, St. Petersburg, Russia, and I. I. Mikhaleva and I. A. Prudchenko, Institute of Bio-organic Chemistry, Russian Academy of Sciences, Moscow
^Charnay Y, Golaz J, Vallet PG, Bouras C (1992). "Production and immunohistochemical application of monoclonal antibodies against delta sleep-inducing peptide". J Chem Neuroanat. 5 (6): 503–9. doi:10.1016/0891-0618(92)90005-B. PMID1476667. S2CID10260659.
^Iyer KS, McCann SM (November 1987). "Delta sleep inducing peptide (DSIP) stimulates the release of LH but not FSH via a hypothalamic site of action in the rat". Brain Research Bulletin. 19 (5): 535–538. doi:10.1016/0361-9230(87)90069-4. PMID3121137. S2CID7710977.
^Koval'zon VM (1994). "[DSIP: the sleep peptide or an unknown hypothalamic hormone?]". Zhurnal Evoliutsionnoi Biokhimii I Fiziologii (in Russian). 30 (2): 310–319. PMID7817664.: Koval'zon VM (1994). "[DSIP: the sleep peptide or an unknown hypothalamic hormone?]". Zhurnal Evoliutsionnoi Biokhimii I Fiziologii (in Russian). 30 (2): 310–319. PMID7817664.
^Kitayama I, Kawguchi S, Murase S, Otani M, Takayama M, Nakamura T, Komoiri T, Nomura N, Natotani N, Fuse K (1992). "Noradrenergic and neuroendocrine function in chronic walking stress-induced model of depression in rats". In Kvetňanský R, McCarty R, Axelrod J (eds.). Stress: Neuroendocrine and Molecular Approaches. Boca Raton: CRC Press. pp. 59–72. ISBN978-2-88124-506-0.
^Yehuda S, Kastin AJ, Coy DH (1980). "Thermoragulatory and locomotor effects of DSIP: paradoxical interaction with d-amphetamine". Pharmacol. Biochem. Behav. 13 (6): 895–900. doi:10.1016/0091-3057(80)90225-7. PMID6894196. S2CID25905115.
^Yehuda S, Mostofsky DI (1984). "Modification of the hypothermic circadian cycles induced by DSIP and melatonin in pinealectomized and hypophysectomised rats". Peptides. 5 (3): 495–497. doi:10.1016/0196-9781(84)90076-7. PMID6548024. S2CID3854206.
^Yehuda S, Carasso RL (February 1988). "DSIP--a tool for investigating the sleep onset mechanism: a review". Int. J. Neurosci. 38 (3–4): 345–53. doi:10.3109/00207458808990695. PMID3286557.
^Susić V, Masirević G, Totić S (1987). "The effects of delta-sleep-inducing peptide (DSIP) on wakefulness and sleep patterns in the cat". Brain Research. 414 (2): 262–70. doi:10.1016/0006-8993(87)90006-0. PMID3620931. S2CID27734954.
^Seifritz E, Muller M, Schonenberger G, Trachsel L, Hemmeter U, Hatzinger M, Ernst A, Moore P, Holsboer-Trachsler E (1995). "Human plasma DSIP decreases at the initiation of sleep at different circadian times". Peptides. 16 (8): 1475–1481. doi:10.1016/0196-9781(95)02027-6. PMID8745061. S2CID40634977.
^Steiger A, Holsboer F (1997). "Neuropeptides and human sleep". Sleep. 20 (11): 1038–1052. PMID9456470.
^Nakagaki K, Ebihara S, Usui S, Honda Y, Takahashi Y, Kato N (1986). "Effects of intraventricular injection of anti-DSIP serum on sleep in rats". Yakubutsu Seishin Kodo (Japanese Journal of Psychopharmacology). 6 (2): 259–65. PMID3776352.
^Kovalzon VM (2001). "Sleep-Inducing Properties of DSIP Analogs: Structural and Functional Relationships". Biology Bulletin. 28 (4): 394–400. doi:10.1023/A:1016679208936. S2CID26029559.
^Walleus H, Widerlöv E, Ekman R (1985). "Decreased concentrations of delta-sleep inducing peptide in plasma and cerebrospinal fluid from depressed patients". Nordic Journal of Psychiatry. 39: 63–67. doi:10.3109/08039488509101959.
^Bjartell A, Ekman R, Sundler F, Widerlöv E (1988). "Delta sleep-inducing peptide (DSIP): An overview of central actions and possible relationship to psychiatric illnesses". Nordic Journal of Psychiatry. 42 (2): 111–117. doi:10.3109/08039488809103215.
^Stanojilovic OP, Zivanovic DP, Su Sic VT (2002). "The effects of Delta Sleep-Inducing Peptide on incidence and severity in metaphit-induced epilepsy in rats". Pharmacological Research. 45 (3): 241–247. doi:10.1006/phrs.2001.0938. PMID11884222.
^Stanojlović O, Zivanović D, Mirković S, Mikhaleva I (February 2004). "Delta sleep-inducing peptide and its tetrapeptide analogue alleviate severity of metaphit seizures". Pharmacol. Biochem. Behav. 77 (2): 227–34. doi:10.1016/j.pbb.2003.10.014. PMID14751449. S2CID25447645.
^Nakamura A, Nakashima M, Sugao T, Kanemoto H, Fukumura Y, Shiomi H (1988). "Potent antinociceptive effect of centrally administered delta-sleep-inducing peptide (DSIP)". Eur J Pharmacol. 155 (3): 247–53. doi:10.1016/0014-2999(88)90510-9. PMID2853064.
^Sinyukhin AB, Timoshinov GP, Komilov VA, Shabanov PD (2009). "Delta sleep-inducing peptide analogue corrects the eNS functional state of children treated with antiblastomic [sic] therapy". European Neuropsychopharmacology. 19: S681–S682. doi:10.1016/S0924-977X(09)71101-0. S2CID54240550.
^Soyka M, Rothenhaeusler H (1997). "Delta Sleep-Inducing Peptide Opioid Detoxification". Am. J. Psychiatry. 154 (5): 714–715. doi:10.1176/ajp.154.5.714b. PMID9137140.
^Yukhananov RY, Tennila TM, Miroshnichenko II, Kudrina VS, Ushakov AN, Melnik EI (1992). "Ethanol and Delta Sleep Inducing Peptide effects on brain monoamines". Pharmacol. Biochem. Behav. 43 (3): 683–687. doi:10.1016/0091-3057(92)90396-W. PMID1448465. S2CID54364363.
^Backmund M, Meyer K, Rothenhaeusler HB, Soyka M (1998). "Opioid detoxification with delta sleep-inducing peptide: results of an open clinical trial". J. Clin. Psychopharmacol. 18 (3): 257–258. doi:10.1097/00004714-199806000-00016. PMID9617990.
^Schneider-Helmert D, Schoenenberger GA (1981). "The influence of synthetic DSIP (delta-sleep-inducing-peptide) on disturbed human sleep". Cellular and Molecular Life Sciences. 37 (9): 913–917. doi:10.1007/BF01971753. PMID7028502. S2CID33195794.