Tepelný štítTepelný štít (obecněji tepelná ochrana) je ochranná vrstva umělého kosmického tělesa (například kosmické lodi) nebo balistické střely, chránící před účinky aerodynamického ohřevu při sestupu atmosférou Země nebo jiné planety.[1][2][3] Využívá se v letectví a kosmonautice při brzdění návratových nebo přistávacích pouzder. Při návratu z nízké oběžné dráhy se typický špičkový tepelný tok v rázové vlně pohybuje kolem 500 kW/m2, u meziplanetárních letů je to několik MW/m2.[4][5] Úlohou tepelného štítu je zabránit přestupu tepla z rázové vlny na kosmické těleso. Systémy tepelné ochrany lze rozdělit například na:[6]
Pasivní tepelná ochranaAblativní chlazeníPracuje na principu vytvoření chladnější mezivrstvy proudících par mezi rázovou vlnou a povrchem štítu. Ablativní tepelný štít je vyroben z materiálu s nízkou tepelnou vodivostí a vysokým měrným výparným teplem. Při průchodu atmosférou za vysoké hypersonické rychlosti se povrchová vrstva štítu částečně taví a odpařuje a teplo vznikající v rázové vlně je tak odneseno proudem plynů, jimiž se těleso pohybuje. Lze je navrhnout i pro velmi vysoké tepelné zátěže, většinou na jedno použití. Paradoxně, při příliš nízkých tepelných zátěžích (kdy nedojde k odpařování a štít pak pracuje jen jako izolace) může ochranná funkce selhat. Příklady ablativních materiálů:[7]
Tepelný rezervoár (kapacitní tepelná ochrana)Principem tohoto typu tepelné ochrany je pohlcení příchozího tepla v materiálu štítu tak, aby se nedostalo ve škodlivé míře k nosným strukturám kosmické lodě. Tato funkce je obsažena ve všech typech tepelných štítů, v "čisté" podobě byla použita jen v programu suborbitálních letů Mercury-Redstone (beryliová "houba") nebo u některých jaderných hlavic (např. americké Mk.2 s měděným rezervoárem).[9] Problémem těchto tepelných štítů je především velká hmotnost. Radiativní chlazeníTok zářivé tepelné energie z povrchu roste se čtvrtou mocninou teploty (Stefanův–Boltzmannův zákon). Materiál tepelného štítu tedy může značnou část tepla z plynu zahřátém rázovou vlnou vyzářit, ať už okamžitě nebo postupně (slouží-li štít zároveň jako tepelný rezervoár). Tento princip chlazení se uplatňuje zejména např. na nose a náběžných hranách raketoplánů z uhlík-uhlíkových kompozitů, kde teplota při návratu přesahuje 1500 °C. Jsou vyvíjeny vysokoteplotní slitiny a keramiky na bázi zirkonia a hafnia.[10] Izolační ochranaMateriál tepelného štítu funguje zároveň jako izolace nosné konstrukce pod ním. Zejména na místech, kde je teplota povrchu poněkud nižší, lze využít materiálů s extrémně malou tepelnou vodivostí, jako jsou například u raketoplánu dlaždice z křemenných vláken (do 1260 °C) nebo speciální tkanina (Nomex, do 370 °C).[11] Tvar tepelného štítuI když nejlepší hypersonické vlastnosti mají tělesa s ostrými hranami, nelze je zatím prakticky použít pro tělesa vracející se z oběžné dráhy. Tepelný tok do čela letícího tělesa je menší u těles "tupých", díky větší vzdálenosti rázové vlny od povrchu tělesa (tepelný tok je nepřímo úměrný odmocnině z poloměru zakřivení povrchu, teorii vypracoval roku 1953 Harry Julian Allen).[12] Provedení tepelného štítuTepelný štít je obvykle pevnou součástí tělesa. Může být buď nanesen plošně přímo na povrch dopravního prostředku (Vostok), na jeho odhazovací část (Sojuz) nebo skládán z menších částí (raketoplán). Pro nižší rychlosti lze použít jako tepelnou ochranu i speciální nátěry (X-15). Testovány byly i tepelné štíty nafukovací.[13][14] Reference
Externí odkazy
|