Polinomi mínim
En matemàtiques, el polinomi mínim d'un element α és el polinomi mònic p de menor grau tal que p(α)=0. Les propietats del polinomi mínim depenen de l'estructura algebraica a la qual pertany α.[1] Teoria de cossosEn teoria de cossos, donada una extensió de cos E/F i un element α d'E que sigui algebraic sobre F, el polinomi mínim de α és el polinomi mònic p, amb coeficients en F, de menor grau tal que p(α) = 0. El polinomi mínim és irreductible, i qualsevol oltre polinomi no nul f que compleix f(α) = 0 és un múltiple de p. Àlgebra linealEn l'àlgebra lineal, el polinomi mínim d'una matriu n×n A sobre un cos K és el polinomi mònic p(x) sobre K de menor grau tal que p(A) = 0. Qualsevol altre polinomi q amb q(A) = 0 és un múltiple de p: el polinomi mínim és, doncs, un generador de l'ideal principal de l'anell dels polinomis de K[x] que anul·len A (és l'únic generador mònic). Els següents tres enunciats són equivalents:
La multiplicitat de l'arrel λ de p(x) és la grandària del major bloc de Jordan corresponent a λ. El polinomi mínim no és sempre el mateix que el polinomi característic. Considerem la matriu , que té com a polinomi característic . Tot i així, el polinomi mínim és , ja que , pel que són diferents per a . El fet que el polinomi mínim sempre divideix el polinomi característic és conseqüència del teorema de Cayley–Hamilton. Referències
Bibliografia
|