Notasi O besar, atau notasiBachmann–Landau atau notasi asimtotik merupakan notasi matematika yang menjelaskan perilaku pada batas suatu fungsi ketika argumen cenderung menuju ke nilai yang khusus atau takhingga. Notasi O besar merupakan anggota dari keluarga notasi yang ditemukan oleh Paul Bachmann,[1]Edmund Landau,[2] dan matematikawan lain. Notasi O yang dipilih Bachmann mengartikan Ordnung, yang berarti orde aproksimasi.
Notasi O besar dikaitkan dengan notasi yang berbeda. Ada yang menggunakan o, Ω, ω, dan Θ, yang dipakai untuk menjelaskan jenis batas lain pada laju pertumbuhan asimtotik.
Definisi formal
Misalkan adalah fungsi bernilai riil ataupun kompleks dan adalah fungsi bernilai riil, dan keduanya terdefinisi pada sebuah subhimpunan tak hingga dari bilangan riil positif, sedemikian sehingga bernilai positif untuk semua nilai yang cukup besar, maka
ketika
jika dan hanya jika untuk semua nilai yang cukup besar, nilai absolut dari tidak melebihi dikali dengan sebuah konstanta positif. Dengan kata lain, jika dan hanya jika terdapat sebuah bilangan riil positif dan sebuah bilangan riil sedemikian sehingga
, untuk semua .
Dalam banyak kasus, kita hanya tertarik dengan laju pertumbuhan variabel yang menuju tak hingga sehingga pernyataan tersebut tidak disebutkan lagi, dan hanya ditulis sebagai
.
Notasi ini juga dapat mendeskripsikan perilaku fungsi di dekat sebuah bilangan riil (biasanya ), maka dapat dikatakan
ketika .
jika dan hanya jika terdapat bilangan positif dan sedemikian sehingga
ketika .
Contoh
Dalam penggunaannya, notasi dapat menyederhanakan fungsi . Sebagai contoh, misalkan , fungsi dapat ditulis sebagai
Knuth, Donald (1997). "1.2.11: Asymptotic Representations". Fundamental Algorithms. The Art of Computer Programming. 1 (edisi ke-3rd). Addison-Wesley. ISBN978-0-201-89683-1.
Black, Paul E. (11 March 2005). Black, Paul E., ed. "big-O notation". Dictionary of Algorithms and Data Structures. U.S. National Institute of Standards and Technology. Diakses tanggal December 16, 2006.
Black, Paul E. (17 December 2004). Black, Paul E., ed. "little-o notation". Dictionary of Algorithms and Data Structures. U.S. National Institute of Standards and Technology. Diakses tanggal December 16, 2006.
Black, Paul E. (17 December 2004). Black, Paul E., ed. "Ω". Dictionary of Algorithms and Data Structures. U.S. National Institute of Standards and Technology. Diakses tanggal December 16, 2006.
Black, Paul E. (17 December 2004). Black, Paul E., ed. "ω". Dictionary of Algorithms and Data Structures. U.S. National Institute of Standards and Technology. Diakses tanggal December 16, 2006.
Black, Paul E. (17 December 2004). Black, Paul E., ed. "Θ". Dictionary of Algorithms and Data Structures. U.S. National Institute of Standards and Technology. Diakses tanggal December 16, 2006.