Isotop radioaktif oksigen mulai dari 11O hingga 28O juga telah dikarakterisasi, semuanya berumur pendek. Radioisotop yang berumur paling panjang adalah 15O dengan waktu paruh122,266(43) detik, sedangkan isotop yang berumur paling pendek adalah 11O dengan waktu paruh 198(12) yoktodetik (meskipun waktu paruh 27O dan 28O yang tidak terikat neutron masih belum diketahui).
^( ) nilai spin – Menunjukkan spin dengan argumen penempatan yang lemah.
^# – Nilai yang ditandai # tidak murni berasal dari data eksperimen, tetapi setidaknya sebagian dari tren nuklida tetangga (trends of neighboring nuclides, TNN).
^Dapat digunakan dalam studi NMR jalur metabolisme.
^Dapat digunakan dalam mempelajari jalur metabolisme tertentu.
^ abcdMode peluruhan yang ditunjukkan secara energetik diperbolehkan, tetapi belum diamati secara eksperimental terjadi di nuklida ini.
Isotop stabil
Oksigen alami terbuat dari tiga isotop stabil, 16O, 17O, dan 18O, dengan 16O yang paling melimpah (99,762% kelimpahan alami). Tergantung pada sumber terestrial, berat atom standarnya bervariasi dalam kisaran [15,99903, 15,99977] (nilai konvensionalnya adalah 15,999).
16O memiliki kelimpahan relatif dan absolut yang tinggi karena merupakan produk utama evolusi bintang dan karena merupakan isotop primer, artinya ia dapat dibuat oleh bintang yang awalnya hanya hidrogen saja.[6] Kebanyakan 16O disintesis pada akhir proses fusi helium di bintang; reaksi alfa tripel menciptakan 12C, yang menangkap inti 4He tambahan untuk menghasilkan 16O. Proses pembakaran neon akanmenghasilkan 16O tambahan.[6]
Baik 17O maupun 18O adalah isotop sekunder, yang berarti sintesisnya membutuhkan inti biji. 17O terutama dibuat dengan membakar hidrogen menjadi helium dalam siklus CNO, menjadikannya sebuah isotop umum di zona pembakaran hidrogen bintang.[6] Kebanyakan 18O dihasilkan ketika 14N (dihasilkan berlimpah dari pembakaran CNO) menangkap inti 4He, menjadi 18F. 18F dengan cepat meluruh menjadi 18O membuat isotop ini umum di zona bintang yang kaya helium.[6] Diperlukan sekitar 109kelvin untuk menggabungkan oksigen menjadi belerang.[7]
Pengukuran rasio 18O/16O sering digunakan untuk menginterpretasikan perubahan paleoklimat. Oksigen di udara bumi terdiri dari 99,759%16O, 0,037%17O dan 0,204%18O.[8] Molekul air dengan isotop yang lebih ringan sedikit lebih mungkin untuk menguap dan lebih kecil kemungkinannya untuk jatuh sebagai presipitasi,[9] sehingga air tawar Bumi dan es kutub memiliki sedikit lebih sedikit (0,1981%) 18O daripada udara (0,204%) atau air laut (0,1995%). Disparitas ini memungkinkan analisis pola suhu melalui inti es bersejarah.
Beberapa sampel padat (organik dan anorganik) untuk rasio isotop oksigen biasanya disimpan dalam cangkir perak dan diukur dengan pirolisis dan spektrometri massa.[10] Para peneliti perlu menghindari penyimpanan sampel yang tidak tepat atau berkepanjangan untuk pengukuran yang akurat.[10]
Nilai massa atom 16 diberikan untuk oksigen sebelum definisi unit massa atom terpadu berdasarkan 12C.[11] Karena fisikawan hanya mengacu pada 16O, sedangkan ahli kimia mengacu pada campuran alami isotop, hal ini menyebabkan skala massa yang sedikit berbeda.
Radioisotop
13 radioisotop oksigen telah dikarakterisasi; yang paling stabil adalah 15O dengan waktu paruh122,266(43) detik dan 14O dengan waktu paruh 70,621(11) detik. Semua radioisotop yang tersisa memiliki waktu paruh kurang dari 27 detik dan sebagian besar memiliki waktu paruh kurang dari 0,1 detik. 24O memiliki waktu paruh 77,4(4.5) milidetik. Mode peluruhan yang paling umum untuk isotop yang lebih ringan daripada isotop-isotop stabil adalah peluruhan β+ menjadi nitrogen, dan yang paling umum untuk isotop yang lebih berat daripada isotop-isotop stabil adalah peluruhan β− menjadi fluorin.
15O dan 13N diproduksi di udara ketika sinar gama (misalnya dari petir) merobohkan neutron dari 16O dan 14N:[15]
16O + γ → 15O + n
14N + γ → 13N + n
15O meluruh menjadi 15N, memancarkan sebuah positron. Positron dengan cepat menyatu dengan sebuah elektron, menghasilkan dua sinar gama sekitar 511 keV. Setelah sambaran petir, radiasi gama ini padam dengan waktu paruh 2 menit, tetapi sinar gama berenergi rendah ini rata-rata hanya terbang sekitar 90 meter di udara. Bersama dengan sinar yang dihasilkan dari positron dari 13N mereka hanya dapat dideteksi selama satu menit atau lebih ketika "awan" 15O dan 13O mengapung, terbawa oleh angin.[16]
^Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
^Rischpler, Christoph; Higuchi, Takahiro; Nekolla, Stephan G. (22 November 2014). "Current and Future Status of PET Myocardial Perfusion Tracers". Current Cardiovascular Imaging Reports. 8 (1): 333–343. doi:10.1007/s12410-014-9303-z.Parameter |s2cid= yang tidak diketahui akan diabaikan (bantuan)
^"Production of PET Radionuclides". Austin Hospital, Austin Health. Diarsipkan dari versi asli tanggal 15 January 2013. Diakses tanggal 6 December 2012.Parameter |url-status= yang tidak diketahui akan diabaikan (bantuan)
Emsley, John (2001). "Oxygen". Nature's Building Blocks: An A–Z Guide to the Elements. Oxford, England, UK: Oxford University Press. hlm. 297–304. ISBN978-0-19-850340-8.
Parks, G. D.; Mellor, J. W. (1939). Mellor's Modern Inorganic Chemistry (edisi ke-6th). London: Longmans, Green and Co.